Average performance of the approximation in a dictionary using an l0 objective

被引:0
|
作者
Malgouyres, Francois [1 ]
Nikolova, Mila [2 ]
机构
[1] Univ Paris 13, CNRS, UMR 7539, LAGA, F-93430 Villetaneuse, France
[2] PRES UnivSud, CNRS, ENS Cachan, CMLA, F-94230 Cachan, France
关键词
NOISE;
D O I
10.1016/j.crma.2009.02.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the minimization of the number of non-zero coefficients (the eo "norm") of the representation of a data set in a general dictionary under a fidelity constraint. This (nonconvex) optimization problem leads to the sparsest approximation. The average performance of the model consists in the probability (on the data) to obtain a K-sparse solution-involving at most K nonzero components-from data uniformly distributed on a domain. These probabilities are expressed in terms of the parameters of the model and the accuracy of the approximation. We comment the obtained formulas and give a simulation. To cite this article: F Malgouyres, M. Nikolova, C R. Acad. Sci. Paris, Ser. 1347 (2009). (C) 2009 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:565 / 570
页数:6
相关论文
共 50 条
  • [31] L0 Optimization Using Laplacian Operator for Image Smoothing
    Li M.
    Gao S.
    Han H.
    Zhang C.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2021, 33 (07): : 1000 - 1014
  • [32] Blind Image Deblurring using the l0 Gradient Prior
    Anger, Jeremy
    Facciolo, Gabriele
    Delbracio, Mauricio
    IMAGE PROCESSING ON LINE, 2019, 9 : 124 - 142
  • [33] SPARSE VARIABLE NOISY PCA USING l0 PENALTY
    Ulfarsson, M. O.
    Solo, V.
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 3950 - 3953
  • [34] SMOOTH AND SPARSE HYPERSPECTRAL UNMIXING USING AN l0 PENALTY
    Sigurdsson, Jakob
    Ulfarsson, Magnus O.
    Sveinsson, Johannes R.
    2013 5TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2013,
  • [35] SPARSE LOADING NOISY PCA USING AN l0 PENALTY
    Ulfarsson, M. O.
    Solo, V.
    2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 3597 - 3600
  • [36] Change Detection Using L0 Smoothing and Superpixel Techniques
    Shi, Xiaoliang
    Xu, Yingying
    Zhang, Guixu
    Shen, Chaomin
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, KSEM 2015, 2015, 9403 : 600 - 611
  • [37] Sparse hyperspectral unmixing using an approximate L0 norm
    Tang, Wei
    Shi, Zhenwei
    Duren, Zhana
    OPTIK, 2014, 125 (01): : 31 - 38
  • [38] SPARSE AND LOW RANK DECOMPOSITION USING l0 PENALTY
    Ulfarsson, M. O.
    Solo, V.
    Marjanovic, G.
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 3312 - 3316
  • [39] Collaborative Sparse Hyperspectral Unmixing Using l0 Norm
    Shi, Zhenwei
    Shi, Tianyang
    Zhou, Min
    Xu, Xia
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (09): : 5495 - 5508
  • [40] Hidden Convexity in the l0 Pseudonorm
    Chancelier, Jean-Philippe
    De Lara, Michel
    JOURNAL OF CONVEX ANALYSIS, 2021, 28 (01) : 203 - 236