More than Bags of Words: Sentiment Analysis with Word Embeddings

被引:108
|
作者
Rudkowsky, Elena [1 ]
Haselmayer, Martin [2 ]
Wastian, Matthias [3 ]
Jenny, Marcelo [4 ]
Emrich, Stefan [5 ]
Sedlmair, Michael [6 ]
机构
[1] Univ Vienna, Fac Comp Sci, Vienna, Austria
[2] Univ Vienna, Dept Govt, Vienna, Austria
[3] Vienna Univ Technol, Ctr Computat Complex Syst, Vienna, Austria
[4] Univ Innsbruck, Dept Polit Sci, Innsbruck, Austria
[5] Drahtwarenhandlung Dwh GmbH, Vienna, Austria
[6] Jacobs Univ Bremen, Comp Sci, Bremen, Germany
关键词
ELECTORAL CAMPAIGNS; TEXT ANALYSIS; BAD-NEWS; NEGATIVITY; FREQUENCY; MODELS;
D O I
10.1080/19312458.2018.1455817
中图分类号
G2 [信息与知识传播];
学科分类号
05 ; 0503 ;
摘要
Moving beyond the dominant bag-of-words approach to sentiment analysis we introduce an alternative procedure based on distributed word embeddings. The strength of word embeddings is the ability to capture similarities in word meaning. We use word embeddings as part of a supervised machine learning procedure which estimates levels of negativity in parliamentary speeches. The procedure's accuracy is evaluated with crowdcoded training sentences; its external validity through a study of patterns of negativity in Austrian parliamentary speeches. The results show the potential of the word embeddings approach for sentiment analysis in the social sciences.
引用
收藏
页码:140 / 157
页数:18
相关论文
共 50 条
  • [1] Generating Bags of Words from the Sums of Their Word Embeddings
    White, Lyndon
    Togneri, Roberto
    Liu, Wei
    Bennamoun, Mohammed
    COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING, (CICLING 2016), PT I, 2018, 9623 : 91 - 102
  • [2] Exploring the Effect of Word Embeddings and Bag-of-Words for Vietnamese Sentiment Analysis
    Pham, Duc-Hong
    UBIQUITOUS INTELLIGENT SYSTEMS, 2022, 302 : 595 - 605
  • [3] Word Embeddings for Arabic Sentiment Analysis
    Altowayan, A. Aziz
    Tao, Lixin
    2016 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2016, : 3820 - 3825
  • [4] Refining Word Embeddings with Sentiment Information for Sentiment Analysis
    Kasri M.
    Birjali M.
    Nabil M.
    Beni-Hssane A.
    El-Ansari A.
    El Fissaoui M.
    Journal of ICT Standardization, 2022, 10 (03): : 353 - 382
  • [5] Sentiment and Context-refined Word Embeddings for Sentiment Analysis
    Deniz, Ayca
    Angin, Merih
    Angin, Pelin
    2021 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2021, : 927 - 932
  • [6] Quality of Word Embeddings on Sentiment Analysis Tasks
    Cano, Erion
    Morisio, Maurizio
    NATURAL LANGUAGE PROCESSING AND INFORMATION SYSTEMS, NLDB 2017, 2017, 10260 : 332 - 338
  • [7] Sentiment analysis leveraging emotions and word embeddings
    Giatsoglou, Maria
    Vozalis, Manolis G.
    Diamantaras, Konstantinos
    Vakali, Athena
    Sarigiannidis, George
    Chatzisavvas, Konstantinos Ch.
    EXPERT SYSTEMS WITH APPLICATIONS, 2017, 69 : 214 - 224
  • [8] Learning emotional word embeddings for sentiment analysis
    Zeng, Qingtian
    Zhao, Xishi
    Hu, Xiaohui
    Duan, Hua
    Zhao, Zhongying
    Li, Chao
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 40 (05) : 9515 - 9527
  • [9] Refined Global Word Embeddings Based on Sentiment Concept for Sentiment Analysis
    Wang, Yabing
    Huang, Guimin
    Li, Jun
    Li, Hui
    Zhou, Ya
    Jiang, Hua
    IEEE ACCESS, 2021, 9 : 37075 - 37085
  • [10] Improving Sentiment Analysis in Twitter Using Sentiment Specific Word Embeddings
    Othman, Rania
    Abdelsadek, Youcef
    Chelghoum, Kamel
    Kacem, Imed
    Faiz, Rim
    PROCEEDINGS OF THE 2019 10TH IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT DATA ACQUISITION AND ADVANCED COMPUTING SYSTEMS - TECHNOLOGY AND APPLICATIONS (IDAACS), VOL. 2, 2019, : 854 - 858