Quality of Word Embeddings on Sentiment Analysis Tasks

被引:9
|
作者
Cano, Erion [1 ]
Morisio, Maurizio [1 ]
机构
[1] Politecn Torino, Duca Abruzzi 24, I-10129 Turin, Italy
关键词
Word embeddings; Lyrics mood analysis; Movie review polarity;
D O I
10.1007/978-3-319-59569-6_42
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Word embeddings or distributed representations of words are being used in various applications like machine translation, sentiment analysis, topic identification etc. Quality of word embeddings and performance of their applications depends on several factors like training method, corpus size and relevance etc. In this study we compare performance of a dozen of pretrained word embedding models on lyrics sentiment analysis and movie review polarity tasks. According to our results, Twitter Tweets is the best on lyrics sentiment analysis, whereas Google News and Common Crawl are the top performers on movie polarity analysis. Glove trained models slightly outrun those trained with Skip-gram. Also, factors like topic relevance and size of corpus significantly impact the quality of the models. When medium or large-sized text sets are available, obtaining word embeddings from same training dataset is usually the best choice.
引用
收藏
页码:332 / 338
页数:7
相关论文
共 50 条
  • [1] Word Embeddings for Arabic Sentiment Analysis
    Altowayan, A. Aziz
    Tao, Lixin
    2016 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2016, : 3820 - 3825
  • [2] Refining Word Embeddings with Sentiment Information for Sentiment Analysis
    Kasri M.
    Birjali M.
    Nabil M.
    Beni-Hssane A.
    El-Ansari A.
    El Fissaoui M.
    Journal of ICT Standardization, 2022, 10 (03): : 353 - 382
  • [3] Sentiment and Context-refined Word Embeddings for Sentiment Analysis
    Deniz, Ayca
    Angin, Merih
    Angin, Pelin
    2021 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2021, : 927 - 932
  • [4] Sentiment analysis leveraging emotions and word embeddings
    Giatsoglou, Maria
    Vozalis, Manolis G.
    Diamantaras, Konstantinos
    Vakali, Athena
    Sarigiannidis, George
    Chatzisavvas, Konstantinos Ch.
    EXPERT SYSTEMS WITH APPLICATIONS, 2017, 69 : 214 - 224
  • [5] Learning emotional word embeddings for sentiment analysis
    Zeng, Qingtian
    Zhao, Xishi
    Hu, Xiaohui
    Duan, Hua
    Zhao, Zhongying
    Li, Chao
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 40 (05) : 9515 - 9527
  • [6] Generating Word Embeddings from an Extreme Learning Machine for Sentiment Analysis and Sequence Labeling Tasks
    Lauren, Paula
    Qu, Guangzhi
    Yang, Jucheng
    Watta, Paul
    Huang, Guang-Bin
    Lendasse, Amaury
    COGNITIVE COMPUTATION, 2018, 10 (04) : 625 - 638
  • [7] Generating Word Embeddings from an Extreme Learning Machine for Sentiment Analysis and Sequence Labeling Tasks
    Paula Lauren
    Guangzhi Qu
    Jucheng Yang
    Paul Watta
    Guang-Bin Huang
    Amaury Lendasse
    Cognitive Computation, 2018, 10 : 625 - 638
  • [8] Refined Global Word Embeddings Based on Sentiment Concept for Sentiment Analysis
    Wang, Yabing
    Huang, Guimin
    Li, Jun
    Li, Hui
    Zhou, Ya
    Jiang, Hua
    IEEE ACCESS, 2021, 9 : 37075 - 37085
  • [9] Improving Sentiment Analysis in Twitter Using Sentiment Specific Word Embeddings
    Othman, Rania
    Abdelsadek, Youcef
    Chelghoum, Kamel
    Kacem, Imed
    Faiz, Rim
    PROCEEDINGS OF THE 2019 10TH IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT DATA ACQUISITION AND ADVANCED COMPUTING SYSTEMS - TECHNOLOGY AND APPLICATIONS (IDAACS), VOL. 2, 2019, : 854 - 858
  • [10] Evaluating Quality of Word Embeddings with Sentiment Polarity Identification Task
    Indurthi, Vijayasaradhi
    Oota, Subba Reddy
    SEMANTIC WEB CHALLENGES, SEMWEBEVAL 2018, 2018, 927 : 232 - 237