Word Embeddings for Arabic Sentiment Analysis

被引:0
|
作者
Altowayan, A. Aziz [1 ]
Tao, Lixin [1 ]
机构
[1] Pace Univ, Dept Comp Sci, New York, NY 10038 USA
关键词
sentiment; word embeddings;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Manual feature extraction is a challenging and time consuming task, especially in a Morphologically Rich Language (MRL) such as Arabic. In this paper, we rely on word embeddings as the main source of features for opinion mining in Arabic text such as tweets, consumer reviews, and news articles. First, we compile a large Arabic corpus from various sources to learn word representations. Second, we train and generate word vectors (embeddings) from the corpus. Third, we use the embeddings in our feature representation for training several binary classifiers to detect subjectivity and sentiment in both Standard Arabic and Dialectal Arabic. We compare our results with other methods in literature; our approach-with no hand-crafted features-achieves a slightly better accuracy than the top hand-crafted methods. To reproduce our results and for further work, we publish the data and code used in our experiments.
引用
收藏
页码:3820 / 3825
页数:6
相关论文
共 50 条
  • [1] Arabic Sentiment Analysis Based on Word Embeddings and Deep Learning
    Elhassan, Nasrin
    Varone, Giuseppe
    Ahmed, Rami
    Gogate, Mandar
    Dashtipour, Kia
    Almoamari, Hani
    El-Affendi, Mohammed A.
    Al-Tamimi, Bassam Naji
    Albalwy, Faisal
    Hussain, Amir
    COMPUTERS, 2023, 12 (06)
  • [2] A Comparative Study of Pre-trained Word Embeddings for Arabic Sentiment Analysis
    Zouidine, Mohamed
    Khalil, Mohammed
    2022 IEEE 46TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE (COMPSAC 2022), 2022, : 1243 - 1248
  • [3] Refining Word Embeddings with Sentiment Information for Sentiment Analysis
    Kasri M.
    Birjali M.
    Nabil M.
    Beni-Hssane A.
    El-Ansari A.
    El Fissaoui M.
    Journal of ICT Standardization, 2022, 10 (03): : 353 - 382
  • [4] Improving Arabic Sentiment Analysis with Sentiment-Specific Embeddings
    Altowayan, A. Aziz
    Elnagar, Ashraf
    2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2017, : 4314 - 4320
  • [5] Sentiment and Context-refined Word Embeddings for Sentiment Analysis
    Deniz, Ayca
    Angin, Merih
    Angin, Pelin
    2021 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2021, : 927 - 932
  • [6] Quality of Word Embeddings on Sentiment Analysis Tasks
    Cano, Erion
    Morisio, Maurizio
    NATURAL LANGUAGE PROCESSING AND INFORMATION SYSTEMS, NLDB 2017, 2017, 10260 : 332 - 338
  • [7] Sentiment analysis leveraging emotions and word embeddings
    Giatsoglou, Maria
    Vozalis, Manolis G.
    Diamantaras, Konstantinos
    Vakali, Athena
    Sarigiannidis, George
    Chatzisavvas, Konstantinos Ch.
    EXPERT SYSTEMS WITH APPLICATIONS, 2017, 69 : 214 - 224
  • [8] Learning emotional word embeddings for sentiment analysis
    Zeng, Qingtian
    Zhao, Xishi
    Hu, Xiaohui
    Duan, Hua
    Zhao, Zhongying
    Li, Chao
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 40 (05) : 9515 - 9527
  • [9] Toward Qualitative Evaluation of Embeddings for Arabic Sentiment Analysis
    Barhoumi, Amira
    Camelin, Nathalie
    Aloulou, Chafik
    Esteve, Yannick
    Belguith, Lamia
    PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2020), 2020, : 4955 - 4963
  • [10] Pre-trained Word Embeddings for Arabic Aspect-Based Sentiment Analysis of Airline Tweets
    Ashi, Mohammed Matuq
    Siddiqui, Muazzam Ahmed
    Nadeem, Farrukh
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT SYSTEMS AND INFORMATICS 2018, 2019, 845 : 241 - 251