Benford's Law for coefficients of newforms

被引:3
|
作者
Jameson, Marie [1 ]
Thorner, Jesse [2 ]
Ye, Lynnelle [3 ]
机构
[1] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
[2] Emory Univ, Dept Math & Comp Sci, Atlanta, GA 30322 USA
[3] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
关键词
Benford's Law; equidistribution mod 1; modular forms; Sato-Tate conjecture; DIGITS;
D O I
10.1142/S1793042116500299
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f(z) = Sigma(infinity)(n=1) lambda(f) (n)e(2 pi inz) is an element of S-k(new) (Gamma(0)(N)) be a newform of even weight k >= 2 on Gamma(0)(N) without complex multiplication. Let P denote the set of all primes. We prove that the sequence {lambda(f) (p)}(p is an element of P) does not satisfy Benford's Law in any integer base b >= 2. However, given a base b >= 2 and a string of digits S in base b, the set A(lambda f) (b, S) := {p prime : the first digits of lambda(f) (p) in base b are given by S} has logarithmic density equal to log(b)(1 + S-1). Thus, {lambda(f) (p)}(p is an element of P) follows Benford's Law with respect to logarithmic density. Both results rely on the now-proven Sato-Tate Conjecture.
引用
收藏
页码:483 / 494
页数:12
相关论文
共 50 条
  • [41] On Characterizations and Tests of Benford's Law
    Barabesi, Lucio
    Cerasa, Andrea
    Cerioli, Andrea
    Perrotta, Domenico
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (540) : 1887 - 1903
  • [42] Recurrence relations and Benford's law
    Farris, Madeleine
    Luntzlara, Noah
    Miller, Steven J.
    Shao, Lily
    Wang, Mengxi
    STATISTICAL METHODS AND APPLICATIONS, 2021, 30 (03): : 797 - 817
  • [43] BENFORD'S LAW AND LIGHTNING DATA
    Manoochehrnia, P.
    Rachidi, F.
    Rubinstein, M.
    Schulz, W.
    Diendorfer, G.
    2010 30TH INTERNATIONAL CONFERENCE ON LIGHTNING PROTECTION (ICLP), 2010,
  • [44] A Simple Explanation of Benford's Law
    Fewster, R. M.
    AMERICAN STATISTICIAN, 2009, 63 (01): : 26 - 32
  • [45] A basic theory of Benford's Law
    Berger, Arno
    Hill, Theodore P.
    PROBABILITY SURVEYS, 2011, 8 : 1 - 126
  • [46] Forensic accounting and Benford's law
    Bhattacharya, Sukanto
    Kumar, Kuldeep
    IEEE SIGNAL PROCESSING MAGAZINE, 2008, 25 (02) : 152 - +
  • [47] The mathematics of Benford’s law: a primer
    Arno Berger
    Theodore P. Hill
    Statistical Methods & Applications, 2021, 30 : 779 - 795
  • [48] A concise proof of Benford's law
    Wang, Luohan
    Ma, Bo-Qiang
    FUNDAMENTAL RESEARCH, 2024, 4 (04): : 841 - 844
  • [49] Hubble’s Law Implies Benford’s Law for Distances to Galaxies
    Theodore P. Hill
    Ronald F. Fox
    Journal of Astrophysics and Astronomy, 2016, 37
  • [50] Hubble's Law Implies Benford's Law for Distances to Galaxies
    Hill, Theodore P.
    Fox, Ronald F.
    JOURNAL OF ASTROPHYSICS AND ASTRONOMY, 2016, 37 (01) : 1 - 8