Benford's Law for coefficients of newforms

被引:3
|
作者
Jameson, Marie [1 ]
Thorner, Jesse [2 ]
Ye, Lynnelle [3 ]
机构
[1] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
[2] Emory Univ, Dept Math & Comp Sci, Atlanta, GA 30322 USA
[3] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
关键词
Benford's Law; equidistribution mod 1; modular forms; Sato-Tate conjecture; DIGITS;
D O I
10.1142/S1793042116500299
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f(z) = Sigma(infinity)(n=1) lambda(f) (n)e(2 pi inz) is an element of S-k(new) (Gamma(0)(N)) be a newform of even weight k >= 2 on Gamma(0)(N) without complex multiplication. Let P denote the set of all primes. We prove that the sequence {lambda(f) (p)}(p is an element of P) does not satisfy Benford's Law in any integer base b >= 2. However, given a base b >= 2 and a string of digits S in base b, the set A(lambda f) (b, S) := {p prime : the first digits of lambda(f) (p) in base b are given by S} has logarithmic density equal to log(b)(1 + S-1). Thus, {lambda(f) (p)}(p is an element of P) follows Benford's Law with respect to logarithmic density. Both results rely on the now-proven Sato-Tate Conjecture.
引用
收藏
页码:483 / 494
页数:12
相关论文
共 50 条
  • [21] Benford's law in the Gaia universe
    de Jong, Jurjen
    de Bruijne, Jos
    De Ridder, Joris
    ASTRONOMY & ASTROPHYSICS, 2020, 642
  • [22] Severe testing of Benford’s law
    Roy Cerqueti
    Claudio Lupi
    TEST, 2023, 32 : 677 - 694
  • [23] Recurrence relations and Benford’s law
    Madeleine Farris
    Noah Luntzlara
    Steven J. Miller
    Lily Shao
    Mengxi Wang
    Statistical Methods & Applications, 2021, 30 : 797 - 817
  • [24] Benford's law: Theory and application
    Shiu, Peter
    MATHEMATICAL GAZETTE, 2016, 100 (549): : 564 - 567
  • [25] Applying Benford's law to volcanology
    Geyer, A.
    Marti, J.
    GEOLOGY, 2012, 40 (04) : 327 - 330
  • [26] On Benford's law to variable base
    Schatte, P.
    Statistics & Probability Letters, 37 (04):
  • [27] The mathematics of Benford's law: a primer
    Berger, Arno
    Hill, Theodore P.
    STATISTICAL METHODS AND APPLICATIONS, 2021, 30 (03): : 779 - 795
  • [28] The power of one: Benford’s law
    Kruger, Paul S.
    Yadavalli, V. S. Sarma
    South African Journal of Industrial Engineering, 2017, 28 (02): : 1 - 13
  • [29] Sufficient conditions for Benford's law
    Balanzario, Eugenio P.
    Sanchez-Ortiz, Jorge
    STATISTICS & PROBABILITY LETTERS, 2010, 80 (23-24) : 1713 - 1719
  • [30] Detecting Anomalies by Benford's Law
    Jasak, Z.
    Banjanovic-Mehmedovic, L.
    ISSPIT: 8TH IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY, 2008, : 453 - +