Benford's Law for coefficients of newforms

被引:3
|
作者
Jameson, Marie [1 ]
Thorner, Jesse [2 ]
Ye, Lynnelle [3 ]
机构
[1] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
[2] Emory Univ, Dept Math & Comp Sci, Atlanta, GA 30322 USA
[3] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
关键词
Benford's Law; equidistribution mod 1; modular forms; Sato-Tate conjecture; DIGITS;
D O I
10.1142/S1793042116500299
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f(z) = Sigma(infinity)(n=1) lambda(f) (n)e(2 pi inz) is an element of S-k(new) (Gamma(0)(N)) be a newform of even weight k >= 2 on Gamma(0)(N) without complex multiplication. Let P denote the set of all primes. We prove that the sequence {lambda(f) (p)}(p is an element of P) does not satisfy Benford's Law in any integer base b >= 2. However, given a base b >= 2 and a string of digits S in base b, the set A(lambda f) (b, S) := {p prime : the first digits of lambda(f) (p) in base b are given by S} has logarithmic density equal to log(b)(1 + S-1). Thus, {lambda(f) (p)}(p is an element of P) follows Benford's Law with respect to logarithmic density. Both results rely on the now-proven Sato-Tate Conjecture.
引用
收藏
页码:483 / 494
页数:12
相关论文
共 50 条
  • [1] BENFORD'S LAW FOR COEFFICIENTS OF MODULAR FORMS AND PARTITION FUNCTIONS
    Anderson, Theresa C.
    Rolen, Larry
    Stoehr, Ruth
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (05) : 1533 - 1541
  • [2] A generalized Benford's law for JPEG coefficients and its applications in image forensics
    Fu, Dongdong
    Shi, Yuri Q.
    Su, Wei
    SECURITY, STEGANOGRAPHY, AND WATERMARKING OF MULTIMEDIA CONTENTS IX, 2007, 6505
  • [3] On Benford's Law and the Coefficients of the Riemann Mapping Function for the Exterior of the Mandelbrot Set
    Beretta, Filippo
    Dimino, Jesse
    Fang, Weike
    Martinez, Thomas C.
    Miller, Steven J.
    Stoll, Daniel
    FRACTAL AND FRACTIONAL, 2022, 6 (10)
  • [4] Images and Benford's law
    Jolion, JM
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2001, 14 (01) : 73 - 81
  • [5] BENFORD'S LAW BLUNDERS
    Hill, Theodore P.
    AMERICAN STATISTICIAN, 2011, 65 (02): : 141 - 141
  • [6] An introduction to Benford's law
    Shiu, Peter
    MATHEMATICAL GAZETTE, 2016, 100 (549): : 564 - 567
  • [7] A derivation of Benford's law
    3 Loma Vista, Los Alamos, NM 87544
    不详
    不详
    Am J Math Manage Sci, 2006, 3-4 (355-370):
  • [8] On the nature of Benford's law
    Gottwald, GA
    Nicol, M
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 303 (3-4) : 387 - 396
  • [9] Benford's Law in Astronomy
    Alexopoulos, Theodoros
    Leontsinis, Stefanos
    JOURNAL OF ASTROPHYSICS AND ASTRONOMY, 2014, 35 (04) : 639 - 648
  • [10] Benford's Law for Mixtures
    Balanzario, Eugenio P.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2015, 44 (04) : 698 - 709