A sharp upper bound on the largest eigenvalue of the Laplacian matrix of a graph

被引:52
|
作者
Shu, JL [1 ]
Hong, Y [1 ]
Wen-Ren, K [1 ]
机构
[1] E China Normal Univ, Dept Math, Shanghai 200062, Peoples R China
基金
中国国家自然科学基金;
关键词
line graph; degree sequence; adjacency spectral radius; Laplacian spectral radius;
D O I
10.1016/S0024-3795(01)00548-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a simple connected graph with it vertices. The largest eigenvalue of the Laplacian matrix of G is denoted by V (G). Suppose the degree sequence of G is d(1) greater than or equal to d(2) greater than or equal to ...greater than or equal tod(n). In this paper, we present a sharp upper bound of mu (G) mu(G) less than or equal to d(n) + 1/2 + root(d(n) - 1/2)(2) + Sigma(i=1)(n) d(i)(d(i) - d(n)), the equality holds if and only if G is a regular bipartite graph. (C) 2002 Published by Elsevier Science Inc.
引用
收藏
页码:123 / 129
页数:7
相关论文
共 50 条
  • [31] An Upper Bound for the Largest Eigenvalue of a Positive Semidefinite Block Banded Matrix
    Kolotilina L.Y.
    Journal of Mathematical Sciences, 2018, 232 (6) : 917 - 920
  • [32] A sharp lower bound for the least eigenvalue of the signless Laplacian of a non-bipartite graph
    Cardoso, Domingos M.
    Cvetkovic, Dragos
    Rowlinson, Peter
    Simic, Slobodan K.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (11-12) : 2770 - 2780
  • [33] Sharp upper bound for the first eigenvalue
    Binoy, Raveendran
    Santhanam, G.
    GEOMETRIAE DEDICATA, 2014, 169 (01) : 397 - 410
  • [34] Sharp upper bound for the first eigenvalue
    Raveendran Binoy
    G. Santhanam
    Geometriae Dedicata, 2014, 169 : 397 - 410
  • [35] Sharp upper bounds on the spectral radius of the signless Laplacian matrix of a graph
    Maden, A. Dilek
    Das, Kinkar Ch.
    Cevik, A. Sinan
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (10) : 5025 - 5032
  • [36] A subdivision theorem for the largest signless Laplacian eigenvalue of a graph
    Guo, Shu-Guang
    UTILITAS MATHEMATICA, 2015, 97 : 367 - 372
  • [37] Spectral Gap of the Largest Eigenvalue of the Normalized Graph Laplacian
    Jost, Juergen
    Mulas, Raffaella
    Muench, Florentin
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2022, 10 (03) : 371 - 381
  • [38] Spectral Gap of the Largest Eigenvalue of the Normalized Graph Laplacian
    Jürgen Jost
    Raffaella Mulas
    Florentin Münch
    Communications in Mathematics and Statistics, 2022, 10 : 371 - 381
  • [39] UPPER BOUNDS FOR THE LARGEST EIGENVALUE OF A BIPARTITE GRAPH
    Merikoski, Jorma K.
    Kumar, Ravinder
    Rajput, Ram Asrey
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2013, 26 : 168 - 176
  • [40] Erratum to: Sharp upper bound for the first eigenvalue
    Raveendran Binoy
    G. Santhanam
    Geometriae Dedicata, 2015, 174 : 409 - 411