A sharp upper bound on the largest eigenvalue of the Laplacian matrix of a graph

被引:52
|
作者
Shu, JL [1 ]
Hong, Y [1 ]
Wen-Ren, K [1 ]
机构
[1] E China Normal Univ, Dept Math, Shanghai 200062, Peoples R China
基金
中国国家自然科学基金;
关键词
line graph; degree sequence; adjacency spectral radius; Laplacian spectral radius;
D O I
10.1016/S0024-3795(01)00548-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a simple connected graph with it vertices. The largest eigenvalue of the Laplacian matrix of G is denoted by V (G). Suppose the degree sequence of G is d(1) greater than or equal to d(2) greater than or equal to ...greater than or equal tod(n). In this paper, we present a sharp upper bound of mu (G) mu(G) less than or equal to d(n) + 1/2 + root(d(n) - 1/2)(2) + Sigma(i=1)(n) d(i)(d(i) - d(n)), the equality holds if and only if G is a regular bipartite graph. (C) 2002 Published by Elsevier Science Inc.
引用
收藏
页码:123 / 129
页数:7
相关论文
共 50 条
  • [11] Sharp upper bounds for the largest Laplacian eigenvalue of mixed graphs
    Tian, Gui-Xian
    Huang, Ting-Zhu
    Cui, Shu-Yu
    ARS COMBINATORIA, 2013, 112 : 361 - 371
  • [12] A note on the second largest eigenvalue of the Laplacian matrix of a graph
    Li, JS
    Pan, YL
    LINEAR & MULTILINEAR ALGEBRA, 2000, 48 (02): : 117 - 121
  • [13] The lower bound of the second largest Laplacian eigenvalue on unicyclic graph
    Liu, Ying
    Wang, Shuangcheng
    2011 INTERNATIONAL CONFERENCE ON ECONOMIC AND INFORMATION MANAGEMENT (ICEIM 2011), 2011, : 34 - 36
  • [14] A Sharp Lower Bound on the Least Signless Laplacian Eigenvalue of a Graph
    Chen, Xiaodan
    Hou, Yaoping
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (04) : 2011 - 2018
  • [15] A Sharp Lower Bound on the Least Signless Laplacian Eigenvalue of a Graph
    Xiaodan Chen
    Yaoping Hou
    Bulletin of the Malaysian Mathematical Sciences Society, 2018, 41 : 2011 - 2018
  • [16] The upper bound for the largest signless Laplacian eigenvalue of weighted graphs
    Gazi University, Departments Mathematic, Teknikokullar
    Ankara
    06500, Turkey
    不详
    Ankara
    06500, Turkey
    GU J. Sci., 4 (709-714):
  • [17] A nontrivial upper bound on the largest Laplacian eigenvalue of weighted graphs
    Rojo, Oscar
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 420 (2-3) : 625 - 633
  • [18] A New Upper Bound on the Largest Laplacian Eigenvalue of Weighted Graphs
    Tian, Gui-Xian
    Huang, Ting-Zhu
    ADVANCES IN MATRIX THEORY AND ITS APPLICATIONS, VOL 1: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON MATRIX THEORY AND ITS APPLICATIONS, 2008, : 235 - 237
  • [19] The Upper Bound for the Largest Signless Laplacian Eigenvalue of Weighted Graphs
    Buyukkose, Serife
    Mutlu, Nursah
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2015, 28 (04): : 709 - 714
  • [20] Sharp upper and lower bounds for largest eigenvalue of the Laplacian matrices of trees
    Hong, Y
    Zhang, XD
    DISCRETE MATHEMATICS, 2005, 296 (2-3) : 187 - 197