Smoothing Method for Improved Minimum Phone Error Linear Regression

被引:0
|
作者
Qi, Yaohui [1 ,2 ,3 ]
Pan, Fuping [2 ]
Ge, Fengpei [2 ]
Zhao, Qingwei [2 ]
Yan, Yonghong [1 ,2 ]
机构
[1] Beijing Inst Technol, Coll Informat & Elect, Beijing 100081, Peoples R China
[2] Chinese Acad Sci, Key Lab Speech Acoust & Content Understanding, Inst Acoust, Beijing 100190, Peoples R China
[3] Hebei Normal Univ, Coll Phys Sci & Informat Engn, Shijiazhuang 050024, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
speaker adaptation (SA); maximum likelihood linear regression (MLLR); maximum a posteriori linear regression (MAPLR); minimum phone error linear regression (MPELR); discriminative maximum a posteriori linear regression (DMAPLR); ADAPTATION;
D O I
10.1587/transinf.E97.D.2105
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A smoothing method for minimum phone error linear regression (MPELR) is proposed in this paper. We show that the objective function for minimum phone error (MPE) can be combined with a prior mean distribution. When the prior mean distribution is based on maximum likelihood (ML) estimates, the proposed method is the same as the previous smoothing technique for MPELR. Instead of ML estimates, maximum a posteriori (MAP) parameter estimate is used to define the mode of prior mean distribution to improve the performance of MPELR. Experiments on a large vocabulary speech recognition task show that the proposed method can obtain 8.4% relative reduction in word error rate when the amount of data is limited, while retaining the same asymptotic performance as conventional MPELR. When compared with discriminative maximum a posteriori linear regression (DMAPLR), the proposed method shows improvement except for the case of limited adaptation data for supervised adaptation.
引用
收藏
页码:2105 / 2113
页数:9
相关论文
共 50 条
  • [41] An improved tensor regression model via location smoothing
    Zhou, Ya
    He, Kejun
    STAT, 2021, 10 (01):
  • [42] An algorithm for clusterwise linear regression based on smoothing techniques
    Adil M. Bagirov
    Julien Ugon
    Hijran G. Mirzayeva
    Optimization Letters, 2015, 9 : 375 - 390
  • [43] SIMULTANEOUS CONFIDENCE BANDS FOR LINEAR-REGRESSION AND SMOOTHING
    SUN, JY
    LOADER, CR
    ANNALS OF STATISTICS, 1994, 22 (03): : 1328 - 1345
  • [44] An algorithm for clusterwise linear regression based on smoothing techniques
    Bagirov, Adil M.
    Ugon, Julien
    Mirzayeva, Hijran G.
    OPTIMIZATION LETTERS, 2015, 9 (02) : 375 - 390
  • [45] On prediction error in functional linear regression
    Apanasovich, Tatiyana V.
    Goldstein, Edward
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (13) : 1807 - 1810
  • [46] Minimum variance quadratic unbiased estimation for the variance components in simple linear regression with onefold nested error
    Gueven, Ilgehan
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2006, 35 (07) : 1309 - 1318
  • [47] Minimum generation error linear regression based model adaptation for HMM-based speech synthesis
    Qin, Long
    Wu, Yi-Jian
    Ling, Zhen-Hua
    Wang, Ren-Hua
    Da, Li-Rong
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 3953 - +
  • [48] Adaptive task sorting model based on improved linear regression method
    Wu Y.
    Zha W.
    Ge J.
    Yang W.
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2020, 48 (01): : 93 - 97and107
  • [49] Improved Calibration Method of Respiratory Belts by Extension of Multiple Linear Regression
    Seppanen, T. M.
    Alho, O-P.
    Koskinen, M.
    Seppanen, T.
    5TH EUROPEAN CONFERENCE OF THE INTERNATIONAL FEDERATION FOR MEDICAL AND BIOLOGICAL ENGINEERING, PTS 1 AND 2, 2012, 37 : 161 - +
  • [50] Application of Improved Multiple Linear Regression Method in Oilfield Output Forecasting
    Guo, Liang
    Deng, Xianghui
    2009 INTERNATIONAL CONFERENCE ON INFORMATION MANAGEMENT, INNOVATION MANAGEMENT AND INDUSTRIAL ENGINEERING, VOL 1, PROCEEDINGS, 2009, : 133 - +