Smoothing Method for Improved Minimum Phone Error Linear Regression

被引:0
|
作者
Qi, Yaohui [1 ,2 ,3 ]
Pan, Fuping [2 ]
Ge, Fengpei [2 ]
Zhao, Qingwei [2 ]
Yan, Yonghong [1 ,2 ]
机构
[1] Beijing Inst Technol, Coll Informat & Elect, Beijing 100081, Peoples R China
[2] Chinese Acad Sci, Key Lab Speech Acoust & Content Understanding, Inst Acoust, Beijing 100190, Peoples R China
[3] Hebei Normal Univ, Coll Phys Sci & Informat Engn, Shijiazhuang 050024, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
speaker adaptation (SA); maximum likelihood linear regression (MLLR); maximum a posteriori linear regression (MAPLR); minimum phone error linear regression (MPELR); discriminative maximum a posteriori linear regression (DMAPLR); ADAPTATION;
D O I
10.1587/transinf.E97.D.2105
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A smoothing method for minimum phone error linear regression (MPELR) is proposed in this paper. We show that the objective function for minimum phone error (MPE) can be combined with a prior mean distribution. When the prior mean distribution is based on maximum likelihood (ML) estimates, the proposed method is the same as the previous smoothing technique for MPELR. Instead of ML estimates, maximum a posteriori (MAP) parameter estimate is used to define the mode of prior mean distribution to improve the performance of MPELR. Experiments on a large vocabulary speech recognition task show that the proposed method can obtain 8.4% relative reduction in word error rate when the amount of data is limited, while retaining the same asymptotic performance as conventional MPELR. When compared with discriminative maximum a posteriori linear regression (DMAPLR), the proposed method shows improvement except for the case of limited adaptation data for supervised adaptation.
引用
收藏
页码:2105 / 2113
页数:9
相关论文
共 50 条
  • [31] Improved estimation in multiple linear regression models with measurement error and general constraint
    Liang, Hua
    Song, Weixing
    JOURNAL OF MULTIVARIATE ANALYSIS, 2009, 100 (04) : 726 - 741
  • [32] Regression spline smoothing using the minimum description length principle
    Lee, TCM
    STATISTICS & PROBABILITY LETTERS, 2000, 48 (01) : 71 - 82
  • [33] An Improved Adaptive Smoothing Method
    Hu, Xin
    Peng, Hui
    Kesker, Joseph
    Cai, Xiang
    Wee, William G.
    Lee, Jing-Huei
    IMAGE ANALYSIS AND PROCESSING - ICIAP 2009, PROCEEDINGS, 2009, 5716 : 757 - +
  • [34] Supervised adaptation of MCE-trained CDHMMs using minimum classification error linear regression
    Wu, J
    Huo, Q
    2002 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-IV, PROCEEDINGS, 2002, : 605 - 608
  • [35] Discriminative pronunciation modeling based on minimum phone error training
    Song, Meixu
    Zhang, Qingqing
    Pan, Jielin
    Yan, Yonghong
    14TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2013), VOLS 1-5, 2013, : 1940 - 1944
  • [36] BEST LINEAR MINIMUM BIAS ESTIMATION IN LINEAR REGRESSION
    SCHONFELD, P
    ECONOMETRICA, 1971, 39 (03) : 531 - +
  • [37] An improved machine tool volumetric error compensation method based on linear and squareness error correction method
    Weiguo Gao
    Lingtao Weng
    Jinyi Zhang
    Wenjie Tian
    Guanwei Zhang
    Yingjie Zheng
    Jinhe Li
    The International Journal of Advanced Manufacturing Technology, 2020, 106 : 4731 - 4744
  • [38] An improved machine tool volumetric error compensation method based on linear and squareness error correction method
    Gao, Weiguo
    Weng, Lingtao
    Zhang, Jinyi
    Tian, Wenjie
    Zhang, Guanwei
    Zhen, Yingjie
    Li, Jinhe
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2020, 106 (11-12): : 4731 - 4744
  • [39] Nonlinear wavelet smoothing of error density in a semiparametric regression model
    Chai G.
    Xu K.
    Applied Mathematics-A Journal of Chinese Universities, 1999, 14 (3) : 329 - 336