Smoothing Method for Improved Minimum Phone Error Linear Regression

被引:0
|
作者
Qi, Yaohui [1 ,2 ,3 ]
Pan, Fuping [2 ]
Ge, Fengpei [2 ]
Zhao, Qingwei [2 ]
Yan, Yonghong [1 ,2 ]
机构
[1] Beijing Inst Technol, Coll Informat & Elect, Beijing 100081, Peoples R China
[2] Chinese Acad Sci, Key Lab Speech Acoust & Content Understanding, Inst Acoust, Beijing 100190, Peoples R China
[3] Hebei Normal Univ, Coll Phys Sci & Informat Engn, Shijiazhuang 050024, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
speaker adaptation (SA); maximum likelihood linear regression (MLLR); maximum a posteriori linear regression (MAPLR); minimum phone error linear regression (MPELR); discriminative maximum a posteriori linear regression (DMAPLR); ADAPTATION;
D O I
10.1587/transinf.E97.D.2105
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A smoothing method for minimum phone error linear regression (MPELR) is proposed in this paper. We show that the objective function for minimum phone error (MPE) can be combined with a prior mean distribution. When the prior mean distribution is based on maximum likelihood (ML) estimates, the proposed method is the same as the previous smoothing technique for MPELR. Instead of ML estimates, maximum a posteriori (MAP) parameter estimate is used to define the mode of prior mean distribution to improve the performance of MPELR. Experiments on a large vocabulary speech recognition task show that the proposed method can obtain 8.4% relative reduction in word error rate when the amount of data is limited, while retaining the same asymptotic performance as conventional MPELR. When compared with discriminative maximum a posteriori linear regression (DMAPLR), the proposed method shows improvement except for the case of limited adaptation data for supervised adaptation.
引用
收藏
页码:2105 / 2113
页数:9
相关论文
共 50 条
  • [1] Minimum phone error and I-smoothing for improved discriminative training
    Povey, D
    Woodland, PC
    2002 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-IV, PROCEEDINGS, 2002, : 105 - 108
  • [2] ON EDGEWORTHS METHOD FOR MINIMUM ABSOLUTE ERROR LINEAR-REGRESSION
    HAWLEY, RW
    GALLAGHER, NC
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1994, 42 (08) : 2045 - 2054
  • [3] Fast Minimum Error Entropy for Linear Regression
    Li, Qiang
    Liao, Xiao
    Cui, Wei
    Wang, Ying
    Cao, Hui
    Guan, Qingshu
    ALGORITHMS, 2024, 17 (08)
  • [4] Predicting Chinese Mobile Phone Users Based on Combined Exponential Smoothing-Linear Regression Method
    Jianag, Meng-yun
    Bai, Lin
    2016 2ND INTERNATIONAL CONFERENCE ON SOCIAL, EDUCATION AND MANAGEMENT ENGINEERING (SEME 2016), 2016, : 251 - 255
  • [5] Error-dependent smoothing rules in local linear regression
    Cheng, MY
    Hall, P
    STATISTICA SINICA, 2002, 12 (02) : 429 - 447
  • [6] Minimum Hypothesis Phone Error as a Decoding Method for Speech Recognition
    Xu, Haihua
    Povey, Daniel
    Zhu, Jie
    Wu, Guanyong
    INTERSPEECH 2009: 10TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2009, VOLS 1-5, 2009, : 92 - +
  • [7] DEPENDENT ERROR REGRESSION SMOOTHING - A NEW METHOD AND PC PROGRAM
    SCHIMEK, MG
    SCHMARANZ, KG
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1994, 17 (04) : 457 - 464
  • [8] The minimum mean square error linear estimator and ridge regression
    Wang, ZF
    Yu, XW
    2002 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-4, PROCEEDINGS, 2002, : 199 - 201
  • [9] An Improved Linear Minimum-Mean-Square-Error Detector
    Huang, Chengti
    Wang, Houjun
    Liu, Rueywen
    JOURNAL OF INTERNET TECHNOLOGY, 2011, 12 (05): : 741 - 744
  • [10] MINIMUM MEAN-SQUARE ERROR ESTIMATION IN LINEAR-REGRESSION
    LISKI, EP
    TOUTENBURG, H
    TRENKLER, G
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1993, 37 (02) : 203 - 214