Z-Skip-Links for Fast Traversal of ZDDs Representing Large-Scale Sparse Datasets

被引:0
|
作者
Minato, Shin-Ichi [1 ]
机构
[1] Hokkaido Univ, Grad Sch Informat Sci & Technol, JST ERATO MINATO Discrete Struct Manipulat Syst P, Sapporo, Hokkaido 060, Japan
来源
ALGORITHMS - ESA 2013 | 2013年 / 8125卷
关键词
ZBDDS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
ZDD (Zero-suppressed Binary Decision Diagram) is known as an efficient data structure for representing and manipulating large-scale sets of combinations. In this article, we propose a method of using Z-Skip-Links to accelerate ZDD traversals for manipulating large-scale sparse datasets. We discuss average case complexity analysis of our method, and present the optimal parameter setting. Our method can be easily implemented into the existing ZDD packages just by adding one link per ZDD node. Experimental results show that we obtained dozens of acceleration ratio for the instances of the large-scale sparse datasets including thousands of items.
引用
收藏
页码:731 / 742
页数:12
相关论文
共 29 条
  • [21] Fast Nonlinear Least Squares Optimization of Large-Scale Semi-Sparse Problems
    Fratarcangeli, M.
    Bradley, D.
    Gruber, A.
    Zoss, G.
    Beeler, T.
    COMPUTER GRAPHICS FORUM, 2020, 39 (02) : 247 - 259
  • [22] Morphing projections: a new visual technique for fast and interactive large-scale analysis of biomedical datasets
    Diaz, Ignacio
    Enguita, Jose M.
    Gonzalez, Ana
    Garcia, Diego
    Cuadrado, Abel A.
    Chiara, Maria D.
    Valdes, Nuria
    BIOINFORMATICS, 2021, 37 (11) : 1571 - 1580
  • [23] Fast simulation of large-scale planar circuits using an object-oriented sparse solver
    Sabet, KF
    Cheng, JC
    Katehi, LPB
    Sarabandi, K
    Harvey, JF
    1999 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, VOLS 1-4, 1999, : 373 - 376
  • [24] Fast, private and verifiable: Server-aided approximate similarity computation over large-scale datasets
    Department of Information Security, Beijing Jiaotong University, Beijing
    100044, China
    不详
    AZ
    85721-0104, United States
    不详
    UT
    84322, United States
    SCC - Proc. ACM Int. Workshop Secur. Cloud Comput., Co-located Asia CCS, 1600, (29-36):
  • [25] A fast and scalable framework for large-scale and ultrahigh-dimensional sparse regression with application to the UK Biobank
    Qian, Junyang
    Tanigawa, Yosuke
    Du, Wenfei
    Aguirre, Matthew
    Chang, Chris
    Tibshirani, Robert
    Rivas, Manuel A.
    Hastie, Trevor
    PLOS GENETICS, 2020, 16 (10):
  • [26] An extended Newton-type algorithm for l2-regularized sparse logistic regression and its efficiency for classifying large-scale datasets
    Wang, Rui
    Xiu, Naihua
    Zhou, Shenglong
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 397
  • [27] SOAR - Sparse Oracle-based Adaptive Rule Extraction: Knowledge extraction from large-scale datasets to detect credit card fraud
    Ryman-Tubb, Nick F.
    Garcez, Artur d'Avila
    2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010, 2010,
  • [28] PseAAC-General: Fast Building Various Modes of General Form of Chou's Pseudo-Amino Acid Composition for Large-Scale Protein Datasets
    Du, Pufeng
    Gu, Shuwang
    Jiao, Yasen
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2014, 15 (03): : 3495 - 3506
  • [29] A fast boundary element method using the Z-transform and high-frequency approximations for large-scale three-dimensional transient wave problems
    Mavaleix-Marchessoux, Damien
    Bonnet, Marc
    Chaillat, Stephanie
    Leble, Bruno
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2020, 121 (21) : 4734 - 4767