Z-Skip-Links for Fast Traversal of ZDDs Representing Large-Scale Sparse Datasets

被引:0
|
作者
Minato, Shin-Ichi [1 ]
机构
[1] Hokkaido Univ, Grad Sch Informat Sci & Technol, JST ERATO MINATO Discrete Struct Manipulat Syst P, Sapporo, Hokkaido 060, Japan
来源
ALGORITHMS - ESA 2013 | 2013年 / 8125卷
关键词
ZBDDS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
ZDD (Zero-suppressed Binary Decision Diagram) is known as an efficient data structure for representing and manipulating large-scale sets of combinations. In this article, we propose a method of using Z-Skip-Links to accelerate ZDD traversals for manipulating large-scale sparse datasets. We discuss average case complexity analysis of our method, and present the optimal parameter setting. Our method can be easily implemented into the existing ZDD packages just by adding one link per ZDD node. Experimental results show that we obtained dozens of acceleration ratio for the instances of the large-scale sparse datasets including thousands of items.
引用
收藏
页码:731 / 742
页数:12
相关论文
共 29 条
  • [11] Fast sparse twin learning framework for large-scale pattern classification
    Wang, Haoyu
    Yu, Guolin
    Ma, Jun
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 130
  • [12] Fast Identification of Encrypted Traffic via Large-scale Sparse Screening
    Meng, Peng
    Zhou, Guopeng
    Meng, Juan
    2017 FIFTH INTERNATIONAL CONFERENCE ON ADVANCED CLOUD AND BIG DATA (CBD), 2017, : 273 - 278
  • [13] Fast autonomous exploration with sparse topological graphs in large-scale environments
    Wei, Changyun
    Wu, Jianbin
    Xia, Yu
    Ji, Ze
    INTERNATIONAL JOURNAL OF INTELLIGENT ROBOTICS AND APPLICATIONS, 2024, 8 (01) : 111 - 121
  • [14] FAST APPROXIMATE SOLUTION OF LARGE-SCALE SPARSE LINEAR-SYSTEMS
    ONG, HL
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1984, 10 (01) : 45 - 54
  • [15] A fast classification strategy for SVM on the large-scale high-dimensional datasets
    I-Jing Li
    Jiunn-Lin Wu
    Chih-Hung Yeh
    Pattern Analysis and Applications, 2018, 21 : 1023 - 1038
  • [16] A fast classification strategy for SVM on the large-scale high-dimensional datasets
    Li, I-Jing
    Wu, Jiunn-Lin
    Yeh, Chih-Hung
    PATTERN ANALYSIS AND APPLICATIONS, 2018, 21 (04) : 1023 - 1038
  • [17] Sparse and online null proximal discriminant analysis for one class learning in large-scale datasets
    Dufrenois, Franck
    Hamad, Denis
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [18] Jointly sparse fast hashing with orthogonal learning for large-scale image retrieval
    Xu, Honghao
    Lai, Zhihui
    Kong, Heng
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2023, 119
  • [19] Fast sparse synthesis of Large-Scale Arrays in Wideband and Wide Angle Scanning
    Li, P. X.
    Gu, P. F.
    2020 INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY (ICMMT 2020 ONLINE), 2020,
  • [20] Fast Supervised LDA for Discovering Micro-Events in Large-Scale Video Datasets
    Katharopoulos, Angelos
    Paschalidou, Despoina
    Diou, Christos
    Delopoulos, Anastasios
    MM'16: PROCEEDINGS OF THE 2016 ACM MULTIMEDIA CONFERENCE, 2016, : 332 - 336