A fresh approach to classical Eisenstein series and the newer Hilbert-Eisenstein series

被引:5
|
作者
Butzer, Paul L. [1 ]
Pogany, Tibor K. [2 ,3 ]
机构
[1] Rhein Westfal TH Aachen, Lehrstuhl Math A, D-52056 Aachen, Germany
[2] Obuda Univ, John von Neumann Fac Informat, H-1034 Budapest, Hungary
[3] Univ Rijeka, Fac Maritime, HR-51000 Rijeka, Croatia
关键词
Bernoulli numbers; conjugate Bernoulli numbers; Butzer-Flocke-Hauss complete Omega function; digamma function; Dirichlet Eta function; Eisenstein series; exponential generating functions; Hilbert transform; Hilbert-Eisenstein series; Riemann Zeta function; OMEGA-FUNCTION;
D O I
10.1142/S1793042117500464
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with new results for the circular Eisenstein series e(r)(z) as well as with a novel approach to Hilbert-Eisenstein series h(r)(z), introduced by Michael Hauss in 1995. The latter turns out to be the product of the hyperbolic sinh function with an explicit closed form linear combination of digamma functions. The results, which include differentiability properties and integral representations, are established by independent and different argumentations. Highlights are new results on the Butzer-Flocke-Hauss Omega function, one basis for the study of Hilbert-Eisenstein series, which have been the subject of several recent papers.
引用
收藏
页码:885 / 911
页数:27
相关论文
共 50 条
  • [21] EISENSTEIN SERIES AND TRANSCENDENCE
    BERTRAND, D
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1976, 104 (03): : 309 - 321
  • [22] Biquadratic Eisenstein Series
    D. S. Kataev
    Journal of Mathematical Sciences, 2003, 116 (1) : 2993 - 3009
  • [23] Periods of Eisenstein series
    Lapid, E
    Rogawski, J
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (06): : 513 - 516
  • [24] Eisenstein series and approximations to π
    Berndt, BC
    Chan, HH
    ILLINOIS JOURNAL OF MATHEMATICS, 2001, 45 (01) : 75 - 90
  • [25] Monomials of Eisenstein series
    Griffin, Trevor
    Kenshur, Nathan
    Price, Abigail
    Vandenberg-Daves, Bradshaw
    Xue, Hui
    Zhu, Daozhou
    JOURNAL OF NUMBER THEORY, 2021, 219 : 445 - 459
  • [26] POLES OF CERTAIN RESIDUAL EISENSTEIN SERIES OF CLASSICAL GROUPS
    Jiang, Dihua
    Liu, Baiying
    Zhang, Lei
    PACIFIC JOURNAL OF MATHEMATICS, 2013, 264 (01) : 83 - 123
  • [27] CRITICAL POINTS OF THE CLASSICAL EISENSTEIN SERIES OF WEIGHT TWO
    Chen, Zhijie
    Lin, Chang-Shou
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2019, 113 (02) : 189 - 226
  • [28] Shimura lift of real analytic Poincare series and Hilbert modular Eisenstein series
    Matthes, R
    MATHEMATISCHE ZEITSCHRIFT, 1998, 229 (03) : 547 - 574
  • [29] Sixteen Eisenstein series
    Cooper, Shaun
    Lam, Heung Yeung
    RAMANUJAN JOURNAL, 2009, 18 (01): : 33 - 59
  • [30] SCHUBERT EISENSTEIN SERIES
    Bump, Daniel
    Choie, YoungJu
    AMERICAN JOURNAL OF MATHEMATICS, 2014, 136 (06) : 1581 - 1608