Sixteen Eisenstein series

被引:7
|
作者
Cooper, Shaun [1 ]
Lam, Heung Yeung [1 ]
机构
[1] Massey Univ, Inst Informat & Math Sci, N Shore Mail Ctr, Auckland, New Zealand
来源
RAMANUJAN JOURNAL | 2009年 / 18卷 / 01期
关键词
Eisenstein series; Elliptic function; Ramanujan's Notebooks; Theta function; SUMMATION;
D O I
10.1007/s11139-007-9039-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
S. Ramanujan gave fourteen families of series in his Second Notebook in Chap. 17, Entries 13-17. In each case he gave only the first few examples, giving us the motivation to find and prove a general formula for each family of series. The aim of this paper is to develop a powerful tool (four versatile functions f (0),f (1),f (2), and f (3)) to collect all of Ramanujan's examples together.
引用
收藏
页码:33 / 59
页数:27
相关论文
共 50 条
  • [1] Sixteen Eisenstein series
    Shaun Cooper
    Heung Yeung Lam
    The Ramanujan Journal, 2009, 18 : 33 - 59
  • [2] ON EISENSTEIN SERIES
    SHIMURA, G
    DUKE MATHEMATICAL JOURNAL, 1983, 50 (02) : 417 - 476
  • [3] Eisenstein Series
    Howard, Benjamin
    Yang, Tonghai
    INTERSECTIONS OF HIRZEBRUCH-ZAGIER DIVISORS AND CM CYCLES, 2012, 2041 : 43 - 63
  • [4] Siegel Eisenstein series of degree n and Λ-adic Eisenstein series
    Takemori, Sho
    JOURNAL OF NUMBER THEORY, 2015, 149 : 105 - 138
  • [5] Geometric Eisenstein series
    Braverman, A
    Gaitsgory, D
    INVENTIONES MATHEMATICAE, 2002, 150 (02) : 287 - 384
  • [6] TRUNCATION OF EISENSTEIN SERIES
    Lapid, Erez
    Ouellette, Keith
    PACIFIC JOURNAL OF MATHEMATICS, 2012, 260 (02) : 665 - 685
  • [7] The connection to eisenstein series
    Rapoport, Michael
    Wedhorn, Torsten
    ASTERISQUE, 2007, (312) : 191 - 208
  • [8] ON HERMITIAN EISENSTEIN SERIES
    NAGAOKA, S
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1994, 70 (04) : 115 - 117
  • [9] Geometric Eisenstein series
    A. Braverman
    D. Gaitsgory
    Inventiones mathematicae, 2002, 150 : 287 - 384
  • [10] EISENSTEIN SERIES AND TRANSCENDENCE
    BERTRAND, D
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1976, 104 (03): : 309 - 321