Longitudinal data model selection

被引:18
|
作者
Azari, Rahman
Li, Lexin [1 ]
Tsai, Chih-Ling
机构
[1] Univ Calif Davis, Sch Med, Davis, CA 95616 USA
[2] Univ Calif Davis, Dept Stat, Davis, CA 95616 USA
[3] Univ Calif Davis, Grad Sch Management, Davis, CA 95616 USA
[4] Peking Univ, Guanghua Sch Management, Beijing 100871, Peoples R China
关键词
model selection; Akaike information criterion; Bayesian information criterion; Kullback-Leibler discrepancy; longitudinal data;
D O I
10.1016/j.csda.2005.05.009
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In longitudinal data with correlated errors, we apply the likelihood and residual likelihood approaches to obtain the corrected Akaike information criterion (AICc) and the residual information criterion (RIC), respectively. Simulation studies show that AICc outperforms the Akaike information criterion (AIC) when the numbers of subjects and repeated observations are small, and RIC is superior to the Bayesian information criterion (BIC) when the signal-to-noise ratio is moderate to large. We illustrate the practical use of these selection criteria with an empirical example for modeling the serum cholesterol measured at six time occasions. (C) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:3053 / 3066
页数:14
相关论文
共 50 条
  • [41] Variable Selection in Semiparametric Quantile Modeling for Longitudinal Data
    Wang, Kangning
    Lin, Lu
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2015, 44 (11) : 2243 - 2266
  • [42] Variable selection in robust regression models for longitudinal data
    Fan, Yali
    Qin, Guoyou
    Zhu, Zhongyi
    JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 109 : 156 - 167
  • [43] Variable selection in rank regression for analyzing longitudinal data
    Fu, Liya
    Wang, You-Gan
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2018, 27 (08) : 2447 - 2458
  • [44] Quantile regression for incomplete longitudinal data with selection by death
    Jacqmin-Gadda, Helene
    Rouanet, Anais
    Mba, Robert D.
    Philipps, Viviane
    Dartigues, Jean-Francois
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2020, 29 (09) : 2697 - 2716
  • [45] Feature Selection for the Classification of Longitudinal Human Ageing Data
    Pomsuwan, Tossapol
    Freitas, Alex A.
    2017 17TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2017), 2017, : 739 - 746
  • [46] Variable selection in robust semiparametric modeling for longitudinal data
    Wang, Kangning
    Lin, Lu
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2014, 43 (02) : 303 - 314
  • [47] Model selection with overdispersed data
    Fitzmaurice, GM
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES D-THE STATISTICIAN, 1997, 46 (01) : 81 - 91
  • [48] Empirical-likelihood-based criteria for model selection on marginal analysis of longitudinal data with dropout missingness
    Chen, Chixiang
    Shen, Biyi
    Zhang, Lijun
    Xue, Yuan
    Wang, Ming
    BIOMETRICS, 2019, 75 (03) : 950 - 965
  • [49] Joint model selection of marginal mean regression and correlation structure for longitudinal data with missing outcome and covariates
    Shen, Chung-Wei
    Chen, Yi-Hau
    BIOMETRICAL JOURNAL, 2018, 60 (01) : 20 - 33
  • [50] Bayesian penalized model for classification and selection of functional predictors using longitudinal MRI data from ADNI
    Banik, Asish
    Maiti, Taps
    Bender, Andrew
    STATISTICAL THEORY AND RELATED FIELDS, 2022, 6 (04) : 327 - 343