Longitudinal data model selection

被引:18
|
作者
Azari, Rahman
Li, Lexin [1 ]
Tsai, Chih-Ling
机构
[1] Univ Calif Davis, Sch Med, Davis, CA 95616 USA
[2] Univ Calif Davis, Dept Stat, Davis, CA 95616 USA
[3] Univ Calif Davis, Grad Sch Management, Davis, CA 95616 USA
[4] Peking Univ, Guanghua Sch Management, Beijing 100871, Peoples R China
关键词
model selection; Akaike information criterion; Bayesian information criterion; Kullback-Leibler discrepancy; longitudinal data;
D O I
10.1016/j.csda.2005.05.009
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In longitudinal data with correlated errors, we apply the likelihood and residual likelihood approaches to obtain the corrected Akaike information criterion (AICc) and the residual information criterion (RIC), respectively. Simulation studies show that AICc outperforms the Akaike information criterion (AIC) when the numbers of subjects and repeated observations are small, and RIC is superior to the Bayesian information criterion (BIC) when the signal-to-noise ratio is moderate to large. We illustrate the practical use of these selection criteria with an empirical example for modeling the serum cholesterol measured at six time occasions. (C) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:3053 / 3066
页数:14
相关论文
共 50 条
  • [21] A comparison of some criteria for states selection in the latent Markov model for longitudinal data
    S. Bacci
    S. Pandolfi
    F. Pennoni
    Advances in Data Analysis and Classification, 2014, 8 : 125 - 145
  • [22] Consistent model selection and data-driven smooth tests for longitudinal data in the estimating equations approach
    Wang, Lan
    Qu, Annie
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2009, 71 : 177 - 190
  • [23] Model estimation and selection for partial linear varying coefficient EV models with longitudinal data
    Zhao, Mingtao
    Xu, Xiaoli
    Zhu, Yanling
    Zhang, Kongsheng
    Zhou, Yan
    JOURNAL OF APPLIED STATISTICS, 2023, 50 (03) : 512 - 534
  • [24] Model Selection Using Database Characteristics: Developing a Classification Tree for Longitudinal Incidence Data
    Schwartz, Eric M.
    Bradlow, Eric T.
    Fader, Peter S.
    MARKETING SCIENCE, 2014, 33 (02) : 188 - 205
  • [25] Model selection for Bayesian linear mixed models with longitudinal data: Sensitivity to the choice of priors
    Ariyo, Oludare
    Lesaffre, Emmanuel
    Verbeke, Geert
    Quintero, Adrian
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (04) : 1591 - 1615
  • [26] Nested model selection for longitudinal data using information criteria and the conditional adjustment strategy
    Vallejo Seco, Guillermo
    Arnau Gras, Jaime
    Bono Cabre, Roser
    Fernandez Garcia, Paula
    Tuero Herrero, Ellian
    PSICOTHEMA, 2010, 22 (02) : 323 - 333
  • [27] Variable selection and estimation for longitudinal survey data
    Wang, Li
    Wang, Suojin
    Wang, Guannan
    JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 130 : 409 - 424
  • [28] A New Application of Variable Selection in Longitudinal Data
    Li Chun-hong
    Xu Li-qing
    Qin Chao-yong
    2017 IEEE 2ND INTERNATIONAL CONFERENCE ON BIG DATA ANALYSIS (ICBDA), 2017, : 77 - 82
  • [29] Optimising early selection using longitudinal data
    Apiolaza, LA
    Garrick, DJ
    Burdon, RD
    SILVAE GENETICA, 2000, 49 (4-5) : 195 - 200
  • [30] Model for intensive longitudinal data
    Land, Kenneth C.
    Schafer, Joseph L.
    AMERICAN JOURNAL OF SOCIOLOGY, 2007, 113 (02) : 596 - 598