Longitudinal data model selection

被引:18
|
作者
Azari, Rahman
Li, Lexin [1 ]
Tsai, Chih-Ling
机构
[1] Univ Calif Davis, Sch Med, Davis, CA 95616 USA
[2] Univ Calif Davis, Dept Stat, Davis, CA 95616 USA
[3] Univ Calif Davis, Grad Sch Management, Davis, CA 95616 USA
[4] Peking Univ, Guanghua Sch Management, Beijing 100871, Peoples R China
关键词
model selection; Akaike information criterion; Bayesian information criterion; Kullback-Leibler discrepancy; longitudinal data;
D O I
10.1016/j.csda.2005.05.009
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In longitudinal data with correlated errors, we apply the likelihood and residual likelihood approaches to obtain the corrected Akaike information criterion (AICc) and the residual information criterion (RIC), respectively. Simulation studies show that AICc outperforms the Akaike information criterion (AIC) when the numbers of subjects and repeated observations are small, and RIC is superior to the Bayesian information criterion (BIC) when the signal-to-noise ratio is moderate to large. We illustrate the practical use of these selection criteria with an empirical example for modeling the serum cholesterol measured at six time occasions. (C) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:3053 / 3066
页数:14
相关论文
共 50 条
  • [1] Model Selection with the Linear Mixed Model for Longitudinal Data
    Ryoo, Ji Hoon
    MULTIVARIATE BEHAVIORAL RESEARCH, 2011, 46 (04) : 598 - 624
  • [2] Bayesian Model Selection for Longitudinal Count Data
    Ariyo, Oludare
    Lesaffre, Emmanuel
    Verbeke, Geert
    Quintero, Adrian
    SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 2022, 84 (02): : 516 - 547
  • [3] Bayesian Model Selection for Longitudinal Count Data
    Oludare Ariyo
    Emmanuel Lesaffre
    Geert Verbeke
    Adrian Quintero
    Sankhya B, 2022, 84 : 516 - 547
  • [4] Bayesian model selection in linear mixed models for longitudinal data
    Ariyo, Oludare
    Quintero, Adrian
    Munoz, Johanna
    Verbeke, Geert
    Lesaffre, Emmanuel
    JOURNAL OF APPLIED STATISTICS, 2020, 47 (05) : 890 - 913
  • [5] Bayesian variable selection in a binary quantile regression model for longitudinal data
    Li, Chunjing
    Chai, Yating
    Yuan, Xiaohui
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2025,
  • [6] Model Detection and Variable Selection for Varying Coefficient Models with Longitudinal Data
    Feng, San Ying
    Hu, Yu Ping
    Xue, Liu Gen
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2016, 32 (03) : 331 - 350
  • [7] Model detection and variable selection for varying coefficient models with longitudinal data
    San Ying Feng
    Yu Ping Hu
    Liu Gen Xue
    Acta Mathematica Sinica, English Series, 2016, 32 : 331 - 350
  • [8] MODEL SELECTION TECHNIQUES FOR THE COVARIANCE-MATRIX FOR INCOMPLETE LONGITUDINAL DATA
    GRADY, JJ
    HELMS, RW
    STATISTICS IN MEDICINE, 1995, 14 (13) : 1397 - 1416
  • [9] Model Detection and Variable Selection for Varying Coefficient Models with Longitudinal Data
    San Ying FENG
    Yu Ping HU
    Liu Gen XUE
    Acta Mathematica Sinica,English Series, 2016, 32 (03) : 331 - 350
  • [10] VARIABLE SELECTION AND MODEL AVERAGING FOR LONGITUDINAL DATA INCORPORATING GEE APPROACH
    Yang, Hui
    Lin, Peng
    Zou, Guohua
    Liang, Hua
    STATISTICA SINICA, 2017, 27 (01) : 389 - 413