Dynamics of spiral waves in the complex Ginzburg-Landau equation in bounded domains

被引:5
|
作者
Aguareles, M. [1 ]
Chapman, S. J. [2 ]
Witelski, T. [3 ]
机构
[1] Univ Girona, IMAE, Ed P4,Campus Montilivi, Girona 17003, Spain
[2] Univ Oxford, Math Inst, Andrew Wiles Bldg,ROQ Woodstock Rd, Oxford OX2 6GG, England
[3] Duke Univ, Dept Math, Durham, NC 27708 USA
关键词
Law of motion; Asymptotic; Pattern formation; Nonlinear oscillation; Spiral waves; Complex Ginzburg-Landau equation;
D O I
10.1016/j.physd.2020.132699
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Multiple-spiral-wave solutions of the general cubic complex Ginzburg-Landau equation in bounded domains are considered. We investigate the effect of the boundaries on spiral motion under homogeneous Neumann boundary conditions, for small values of the twist parameter q. We derive explicit laws of motion for rectangular domains and we show that the motion of spirals becomes exponentially slow when the twist parameter exceeds a critical value depending on the size of the domain. The oscillation frequency of multiple-spiral patterns is also analytically obtained. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] DYNAMICS OF VORTICES FOR THE COMPLEX GINZBURG-LANDAU EQUATION
    Miot, Evelyne
    ANALYSIS & PDE, 2009, 2 (02): : 159 - 186
  • [22] Phase dynamics in the complex Ginzburg-Landau equation
    Melbourne, I
    Schneider, G
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 199 (01) : 22 - 46
  • [23] Spiral wave dynamics in the complex Ginzburg-Landau equation with broken chiral symmetry
    Nam, Keeyeol
    Ott, Edward
    Gabbay, Michael
    Guzdar, Parvez N.
    Physica D: Nonlinear Phenomena, 1998, 118 (1-2): : 69 - 83
  • [24] Nonequilibrium dynamics in the complex Ginzburg-Landau equation
    Puri, S
    Das, SK
    Cross, MC
    PHYSICAL REVIEW E, 2001, 64 (05):
  • [25] VORTEX DYNAMICS OF THE COMPLEX GINZBURG-LANDAU EQUATION
    MATSUOKA, C
    NOZAKI, K
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1992, 61 (05) : 1429 - 1432
  • [26] Existence of standing waves for the complex Ginzburg-Landau equation
    Cipolatti, Rolci
    Dickstein, Flavio
    Puel, Jean-Pierre
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 422 (01) : 579 - 593
  • [27] Stability for amplitude spiral wave in complex Ginzburg-Landau equation
    Gao Ji-Hua
    Wang Yu
    Zhang Chao
    Yang Hai-Peng
    Ge Zao-Chuan
    ACTA PHYSICA SINICA, 2014, 63 (02)
  • [28] Amplitude spiral wave in coupled complex Ginzburg-Landau equation
    Gao Ji-Hua
    Xie Wei-Miao
    Gao Jia-Zhen
    Yang Hai-Peng
    Ge Zao-Chuan
    ACTA PHYSICA SINICA, 2012, 61 (13)
  • [29] Feedback-controlled dynamics of spiral waves in the complex Ginzburg–Landau equation
    Guoyong Yuan
    Hong Zhang
    Xueli Wang
    Guangrui Wang
    Shaoying Chen
    Nonlinear Dynamics, 2017, 90 : 2745 - 2753
  • [30] Attractors of the Derivative Complex Ginzburg-Landau Equation in Unbounded Domains
    郭柏灵
    韩永前
    数学进展, 2005, (05) : 637 - 639