Asymmetric evolution of magnetic reconnection in collisionless accretion disk

被引:6
|
作者
Shirakawa, Keisuke [1 ]
Hoshino, Masahiro [1 ]
机构
[1] Univ Tokyo, Dept Earth & Planetary Sci, Bunkyo Ku, Tokyo, Japan
关键词
LOCAL SHEAR INSTABILITY; MAGNETOROTATIONAL INSTABILITY; SIMULATIONS; SHEET; TERM; FLOW;
D O I
10.1063/1.4875739
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An evolution of a magnetic reconnection in a collisionless accretion disk is investigated using a 2.5 dimensional hybrid code simulation. In astrophysical disks, magnetorotational instability (MRI) is considered to play an important role by generating turbulence in the disk and contributes to an effective angular momentum transport through a turbulent viscosity. Magnetic reconnection, on the other hand, also plays an important role on the evolution of the disk through a dissipation of a magnetic field enhanced by a dynamo effect of MRI. In this study, we developed a hybrid code to calculate an evolution of a differentially rotating system. With this code, we first confirmed a linear growth of MRI. We also investigated a behavior of a particular structure of a current sheet, which would exist in the turbulence in the disk. From the calculation of the magnetic reconnection, we found an asymmetric structure in the out-of-plane magnetic field during the evolution of reconnection, which can be understood by a coupling of the Hall effect and the differential rotation. We also found a migration of X-point whose direction is determined only by an initial sign of J(0) x Omega(0), where J(0) is the initial current density in the neutral sheet and Omega(0) is the rotational vector of the background Keplerian rotation. Associated with the migration of X-point, we also found a significant enhancement of the perpendicular magnetic field compared to an ordinary MRI. MRI-Magnetic reconnection coupling and the resulting magnetic field enhancement can be an effective process to sustain a strong turbulence in the accretion disk and to a transport of angular momentum. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] MAGNETIC BLOWOUT DURING COLLISIONLESS RECONNECTION
    DRAKE, JF
    BURKHART, GR
    GEOPHYSICAL RESEARCH LETTERS, 1992, 19 (11) : 1077 - 1080
  • [42] Electron response to collisionless magnetic reconnection
    Perona, A.
    Eriksson, L. -G.
    Grasso, D.
    PHYSICS OF PLASMAS, 2010, 17 (04)
  • [43] The Diffusion Region in Collisionless Magnetic Reconnection
    Hesse, Michael
    Neukirch, Thomas
    Schindler, Karl
    Kuznetsova, Masha
    Zenitani, Seiji
    SPACE SCIENCE REVIEWS, 2011, 160 (1-4) : 3 - 23
  • [44] Magnetic reconnection, turbulence, and collisionless shock
    Ji, HT
    Kulsrud, R
    Yamada, M
    ASTROPHYSICS AND SPACE SCIENCE, 2005, 298 (1-2) : 219 - 226
  • [45] Evidence for collisionless magnetic reconnection at Mars
    Eastwood, J. P.
    Brain, D. A.
    Halekas, J. S.
    Drake, J. F.
    Phan, T. D.
    Oieroset, M.
    Mitchell, D. L.
    Lin, R. P.
    Acuna, M.
    GEOPHYSICAL RESEARCH LETTERS, 2008, 35 (02)
  • [46] Effective Resistivity in Collisionless Magnetic Reconnection
    Ma, Z. W.
    Chen, T.
    Zhang, H. W.
    Yu, M. Y.
    SCIENTIFIC REPORTS, 2018, 8
  • [47] Gyrokinetic simulations of collisionless magnetic reconnection
    Rogers, B. N.
    Kobayashi, S.
    Ricci, P.
    Dorland, W.
    Drake, J.
    Tatsuno, T.
    PHYSICS OF PLASMAS, 2007, 14 (09)
  • [48] The diffusion region in collisionless magnetic reconnection
    Hesse, M
    Schindler, K
    Birn, J
    Kuznetsova, M
    PHYSICS OF PLASMAS, 1999, 6 (05) : 1781 - 1795
  • [49] Effective Resistivity in Collisionless Magnetic Reconnection
    Z. W. Ma
    T. Chen
    H. W. Zhang
    M. Y. Yu
    Scientific Reports, 8
  • [50] Recent advances in collisionless magnetic reconnection
    Porcelli, F
    Borgogno, D
    Califano, F
    Grasso, D
    Ottaviani, M
    Pegoraro, F
    PLASMA PHYSICS AND CONTROLLED FUSION, 2002, 44 : B389 - B405