Asymmetric evolution of magnetic reconnection in collisionless accretion disk

被引:6
|
作者
Shirakawa, Keisuke [1 ]
Hoshino, Masahiro [1 ]
机构
[1] Univ Tokyo, Dept Earth & Planetary Sci, Bunkyo Ku, Tokyo, Japan
关键词
LOCAL SHEAR INSTABILITY; MAGNETOROTATIONAL INSTABILITY; SIMULATIONS; SHEET; TERM; FLOW;
D O I
10.1063/1.4875739
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An evolution of a magnetic reconnection in a collisionless accretion disk is investigated using a 2.5 dimensional hybrid code simulation. In astrophysical disks, magnetorotational instability (MRI) is considered to play an important role by generating turbulence in the disk and contributes to an effective angular momentum transport through a turbulent viscosity. Magnetic reconnection, on the other hand, also plays an important role on the evolution of the disk through a dissipation of a magnetic field enhanced by a dynamo effect of MRI. In this study, we developed a hybrid code to calculate an evolution of a differentially rotating system. With this code, we first confirmed a linear growth of MRI. We also investigated a behavior of a particular structure of a current sheet, which would exist in the turbulence in the disk. From the calculation of the magnetic reconnection, we found an asymmetric structure in the out-of-plane magnetic field during the evolution of reconnection, which can be understood by a coupling of the Hall effect and the differential rotation. We also found a migration of X-point whose direction is determined only by an initial sign of J(0) x Omega(0), where J(0) is the initial current density in the neutral sheet and Omega(0) is the rotational vector of the background Keplerian rotation. Associated with the migration of X-point, we also found a significant enhancement of the perpendicular magnetic field compared to an ordinary MRI. MRI-Magnetic reconnection coupling and the resulting magnetic field enhancement can be an effective process to sustain a strong turbulence in the accretion disk and to a transport of angular momentum. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Acceleration of Particles in Collisionless Magnetic Reconnection
    Browning, P. K.
    Vekstein, G.
    Astrophysics and Space Science Library, (229):
  • [32] Electron dissipation in collisionless magnetic reconnection
    Hesse, M
    Winske, D
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1998, 103 (A11): : 26479 - 26486
  • [33] Electron dynamics in collisionless magnetic reconnection
    Lu QuanMing
    Wang RongSheng
    Xie JinLin
    Huang Can
    Lu San
    Wang Shui
    CHINESE SCIENCE BULLETIN, 2011, 56 (12): : 1174 - 1181
  • [34] Magnetic Reconnection, Turbulence, and Collisionless Shock
    Hantao Ji
    Russell Kulsrud
    Masaaki Yamada
    Astrophysics and Space Science, 2005, 298 : 219 - 226
  • [35] The Diffusion Region in Collisionless Magnetic Reconnection
    Michael Hesse
    Thomas Neukirch
    Karl Schindler
    Masha Kuznetsova
    Seiji Zenitani
    Space Science Reviews, 2011, 160 : 3 - 23
  • [36] Laboratory Study of Collisionless Magnetic Reconnection
    Ji, H.
    Yoo, J.
    Fox, W.
    Yamada, M.
    Argall, M.
    Egedal, J.
    Liu, Y. -h.
    Wilder, R.
    Eriksson, S.
    Daughton, W.
    Bergstedt, K.
    Bose, S.
    Burch, J.
    Torbert, R.
    Ng, J.
    Chen, L. -j.
    SPACE SCIENCE REVIEWS, 2023, 219 (08)
  • [37] Collisionless magnetic reconnection in a plasmoid chain
    Markidis, S.
    Henri, P.
    Lapenta, G.
    Divin, A.
    Goldman, M. V.
    Newman, D.
    Eriksson, S.
    NONLINEAR PROCESSES IN GEOPHYSICS, 2012, 19 (01) : 145 - 153
  • [38] Collisionless magnetic reconnection in space plasmas
    Treumann, Rudolf A.
    Baumjohann, Wolfgang
    FRONTIERS IN PHYSICS, 2013, 1
  • [39] The onset of turbulence in collisionless magnetic reconnection
    Rogers, BN
    Drake, JF
    Shay, MA
    GEOPHYSICAL RESEARCH LETTERS, 2000, 27 (19) : 3157 - 3160
  • [40] MACROPARTICLE SIMULATIONS OF COLLISIONLESS MAGNETIC RECONNECTION
    TANAKA, M
    PHYSICS OF PLASMAS, 1995, 2 (08) : 2920 - 2930