A modified damped Newton method for linear complementarity problems

被引:18
|
作者
Bai, Zhong-Zhi [1 ]
Dong, Jun-Liang [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, State Key Lab Sci Engn Comp, Beijing 100080, Peoples R China
关键词
linear complementarity problems; damped Newton method; inexact splitting method; nondegenerate matrix; H-matrix;
D O I
10.1007/s11075-006-9028-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a modified damped Newton method for solving large sparse linear complementarity problems, which adopts a new strategy for determining the stepsize at each Newton iteration. The global convergence of the new method is proved when the system matrix is a nondegenerate matrix. We then apply the matrix splitting technique to this new method, deriving an inexact splitting method for the linear complementarity problems. The global convergence of the resulting inexact splitting method is proved, too. Numerical results show that the new methods are feasible and effective for solving the large sparse linear complementarity problems.
引用
收藏
页码:207 / 228
页数:22
相关论文
共 50 条
  • [41] A smoothing Newton method for general nonlinear complementarity problems
    Qi, HD
    Liao, LZ
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2000, 17 (2-3) : 231 - 253
  • [42] A smoothing inexact Newton method for nonlinear complementarity problems
    Rui, Shao-Ping
    Xu, Cheng-Xian
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (09) : 2332 - 2338
  • [43] A Regularization Newton Method for Solving Nonlinear Complementarity Problems
    D. Sun
    Applied Mathematics and Optimization, 1999, 40 : 315 - 339
  • [44] A SMOOTHING NEWTON METHOD FOR TENSOR EIGENVALUE COMPLEMENTARITY PROBLEMS
    Hu, Wenyu
    Lu, Laishui
    Yin, Cheng
    Yu, Gaohang
    PACIFIC JOURNAL OF OPTIMIZATION, 2017, 13 (02): : 243 - 253
  • [45] A smoothing Newton method for symmetric cone complementarity problems
    Tang, Jia
    Ma, Changfeng
    OPTIMIZATION LETTERS, 2015, 9 (02) : 225 - 244
  • [46] Regularization Newton method for solving nonlinear complementarity problems
    School of Mathematics, University of New South Wales, Sydney, NSW 2052, Australia
    Appl Math Optim, 3 (315-339):
  • [47] The convergence of a smoothing damped Gauss-Newton method for nonlinear complementarity problem
    Ma, Changfeng
    Jiang, Lihua
    Wang, Desheng
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (04) : 2072 - 2087
  • [48] A modulus-based nonsmooth Newton's method for solving horizontal linear complementarity problems
    Mezzadri, F.
    Galligani, E.
    OPTIMIZATION LETTERS, 2021, 15 (05) : 1785 - 1798
  • [49] INFEASIBLE FULL NEWTON-STEP INTERIOR-POINT METHOD FOR LINEAR COMPLEMENTARITY PROBLEMS
    Lesaja, Goran
    Drummer, A.
    Miletic, Ljiljana
    CROATIAN OPERATIONAL RESEARCH REVIEW, 2012, 3 (01) : 163 - 175
  • [50] A modified standard embedding for linear complementarity problems
    Allonso, SA
    Guddat, JR
    Nowack, D
    KYBERNETIKA, 2004, 40 (05) : 551 - 570