A modified damped Newton method for linear complementarity problems

被引:18
|
作者
Bai, Zhong-Zhi [1 ]
Dong, Jun-Liang [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, State Key Lab Sci Engn Comp, Beijing 100080, Peoples R China
关键词
linear complementarity problems; damped Newton method; inexact splitting method; nondegenerate matrix; H-matrix;
D O I
10.1007/s11075-006-9028-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a modified damped Newton method for solving large sparse linear complementarity problems, which adopts a new strategy for determining the stepsize at each Newton iteration. The global convergence of the new method is proved when the system matrix is a nondegenerate matrix. We then apply the matrix splitting technique to this new method, deriving an inexact splitting method for the linear complementarity problems. The global convergence of the resulting inexact splitting method is proved, too. Numerical results show that the new methods are feasible and effective for solving the large sparse linear complementarity problems.
引用
收藏
页码:207 / 228
页数:22
相关论文
共 50 条
  • [21] A Smoothing Newton method for Nonlinear Complementarity Problems
    Feng, Ning
    Tian, Zhi-yuan
    Qu, Xin-lei
    SENSORS, MEASUREMENT AND INTELLIGENT MATERIALS II, PTS 1 AND 2, 2014, 475-476 : 1090 - 1093
  • [22] Nonsmooth Newton methods for vertical linear complementarity problems
    Zheng, Hua
    Lu, Xiaoping
    Vong, Seakweng
    OPTIMIZATION LETTERS, 2025,
  • [23] A REGULARIZATION NEWTON METHOD FOR MIXED COMPLEMENTARITY PROBLEMS
    王宜举
    周厚春
    王长钰
    ActaMathematicaScientia, 2004, (03) : 376 - 384
  • [24] A regularization newton method for mixed complementarity problems
    Wang, YJ
    Zhou, HC
    Wang, CY
    ACTA MATHEMATICA SCIENTIA, 2004, 24 (03) : 376 - 384
  • [25] A smoothing Newton method for nonlinear complementarity problems
    Tang, Jingyong
    Dong, Li
    Zhou, Jinchuan
    Fang, Liang
    COMPUTATIONAL & APPLIED MATHEMATICS, 2013, 32 (01): : 107 - 118
  • [26] A MODIFIED SECANT NEWTON METHOD FOR NON-LINEAR PROBLEMS
    ZHANG, L
    OWEN, DRJ
    COMPUTERS & STRUCTURES, 1982, 15 (05) : 543 - 547
  • [27] A Modified Smoothing Newton Method for Solving Weighted Complementarity Problems with a Nonmonotone Line Search
    Liu, Xiangjing
    Zhang, Jianke
    Chen, Junfeng
    ENGINEERING LETTERS, 2023, 31 (04) : 1684 - 1690
  • [28] A modified feasible semi-smooth asymptotically Newton method for nonlinear complementarity problems
    Ma, Changfeng
    Chen, Baoguo
    Pan, Shaojun
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [29] New reformulation and feasible semismooth Newton method for a class of stochastic linear complementarity problems
    Liu, Hongwei
    Huang, Yakui
    Li, Xiangli
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (23) : 9723 - 9740
  • [30] Strong Convergence of a Two-Step Modified Newton Method for Weighted Complementarity Problems
    Liu, Xiangjing
    Zhang, Jianke
    AXIOMS, 2023, 12 (08)