A modified damped Newton method for linear complementarity problems

被引:18
|
作者
Bai, Zhong-Zhi [1 ]
Dong, Jun-Liang [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, State Key Lab Sci Engn Comp, Beijing 100080, Peoples R China
关键词
linear complementarity problems; damped Newton method; inexact splitting method; nondegenerate matrix; H-matrix;
D O I
10.1007/s11075-006-9028-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a modified damped Newton method for solving large sparse linear complementarity problems, which adopts a new strategy for determining the stepsize at each Newton iteration. The global convergence of the new method is proved when the system matrix is a nondegenerate matrix. We then apply the matrix splitting technique to this new method, deriving an inexact splitting method for the linear complementarity problems. The global convergence of the resulting inexact splitting method is proved, too. Numerical results show that the new methods are feasible and effective for solving the large sparse linear complementarity problems.
引用
收藏
页码:207 / 228
页数:22
相关论文
共 50 条
  • [1] A modified damped Newton method for linear complementarity problems
    Zhong-Zhi Bai
    Jun-Liang Dong
    Numerical Algorithms, 2006, 42 : 207 - 228
  • [2] A damped semismooth Newton method for mixed linear complementarity problems
    Sun, Zhe
    Zeng, Jinping
    OPTIMIZATION METHODS & SOFTWARE, 2011, 26 (02): : 187 - 205
  • [3] A modified damped Gauss–Newton method for non-monotone weighted linear complementarity problems
    Tang, Jingyong
    Zhou, Jinchuan
    Optimization Methods and Software, 2022, 37 (03) : 1145 - 1164
  • [4] A modified damped Gauss-Newton method for non-monotone weighted linear complementarity problems
    Tang, Jingyong
    Zhou, Jinchuan
    OPTIMIZATION METHODS & SOFTWARE, 2022, 37 (03): : 1145 - 1164
  • [5] A damped semismooth Newton iterative method for solving mixed linear complementarity problems
    Wu, Lei
    Sun, Zhe
    Zeng, Jinping
    OPTIMIZATION METHODS & SOFTWARE, 2012, 27 (06): : 951 - 967
  • [7] A nonmonotone damped Gauss-Newton method for nonlinear complementarity problems
    Dong, Li
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, (49): : 206 - 215
  • [8] A smoothing Newton method for extended vertical linear complementarity problems
    Qi, HD
    Liao, LZ
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1999, 21 (01) : 45 - 66
  • [9] Partial projected Newton method for a class of stochastic linear complementarity problems
    Hongwei Liu
    Yakui Huang
    Xiangli Li
    Numerical Algorithms, 2011, 58 : 593 - 618
  • [10] Partial projected Newton method for a class of stochastic linear complementarity problems
    Liu, Hongwei
    Huang, Yakui
    Li, Xiangli
    NUMERICAL ALGORITHMS, 2011, 58 (04) : 593 - 618