Thermal conductivity of one-dimensional Fibonacci quasicrystals

被引:42
|
作者
Maciá, E [1 ]
机构
[1] Univ Complutense, GISC, Dept Fis Mat, Fac Fis, E-28040 Madrid, Spain
关键词
D O I
10.1103/PhysRevB.61.6645
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We consider a general Fibonacci quasicrystal (FQC) in which both the masses and the elastic constants are aperiodically arranged. Making use of a suitable decimation scheme, inspired by real-space renormalization-group concepts, we obtain closed analytical expressions for the global transfer matrix and transmission coefficient for several resonant critical normal modes. The fractal structure of the frequency spectrum significantly influences both the cumulative contribution of the different normal modes to the thermal transport and the dependence of the thermal conductivity with the temperature over a wide temperature range. The role of resonant effects in the heat transport through the FQC is numerically and analytically discussed.
引用
收藏
页码:6645 / 6653
页数:9
相关论文
共 50 条
  • [41] WEIGHT FUNCTION FOR CRACKS IN ONE-DIMENSIONAL PIEZOELECTRIC QUASICRYSTALS
    Wu, Di
    Zhang, Liang-liang
    Gao, Yang
    PROCEEDINGS OF 2016 SYMPOSIUM ON PIEZOELECTRICITY, ACOUSTIC WAVES, AND DEVICE APPLICATIONS (SPAWDA), 2016, : 217 - 221
  • [42] One-Dimensional Model of Thermal Radiation Calorimeter for Measuring Thermal Conductivity and Thermal Diffusivity
    Sawai, S. (sawai@nda.ac.jp), 1600, Japan Society of Applied Physics (42):
  • [43] One-Dimensional Quasicrystals from Incommensurate Charge Order
    Flicker, Felix
    van Wezel, Jasper
    PHYSICAL REVIEW LETTERS, 2015, 115 (23)
  • [44] One-Dimensional Quasicrystals with Power-Law Hopping
    Deng, X.
    Ray, S.
    Sinha, S.
    Shlyapnikov, G., V
    Santos, L.
    PHYSICAL REVIEW LETTERS, 2019, 123 (02)
  • [45] Crack and indentation problems for one-dimensional hexagonal quasicrystals
    Y.Z. Peng
    T.Y. Fan
    The European Physical Journal B - Condensed Matter and Complex Systems, 2001, 21 : 39 - 44
  • [46] Reentrant delocalization transition in one-dimensional photonic quasicrystals
    Vaidya S.
    Jörg C.
    Linn K.
    Goh M.
    Rechtsman M.C.
    Physical Review Research, 2023, 5 (03):
  • [47] Crack and indentation problems for one-dimensional hexagonal quasicrystals
    Peng, YZ
    Fan, TY
    EUROPEAN PHYSICAL JOURNAL B, 2001, 21 (01): : 39 - 44
  • [48] NONLINEAR DYNAMICS OF LOCALIZATION IN A CLASS OF ONE-DIMENSIONAL QUASICRYSTALS
    HOLZER, M
    PHYSICAL REVIEW B, 1988, 38 (08): : 5756 - 5759
  • [49] Spin waves in one-dimensional bicomponent magnonic quasicrystals
    Rychly, J.
    Klos, J. W.
    Mruczkiewicz, M.
    Krawczyk, M.
    PHYSICAL REVIEW B, 2015, 92 (05):
  • [50] Irrational tilt grain boundaries as one-dimensional quasicrystals
    Sutton, A.P.
    1600, (36):