Thermal conductivity of one-dimensional Fibonacci quasicrystals

被引:42
|
作者
Maciá, E [1 ]
机构
[1] Univ Complutense, GISC, Dept Fis Mat, Fac Fis, E-28040 Madrid, Spain
关键词
D O I
10.1103/PhysRevB.61.6645
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We consider a general Fibonacci quasicrystal (FQC) in which both the masses and the elastic constants are aperiodically arranged. Making use of a suitable decimation scheme, inspired by real-space renormalization-group concepts, we obtain closed analytical expressions for the global transfer matrix and transmission coefficient for several resonant critical normal modes. The fractal structure of the frequency spectrum significantly influences both the cumulative contribution of the different normal modes to the thermal transport and the dependence of the thermal conductivity with the temperature over a wide temperature range. The role of resonant effects in the heat transport through the FQC is numerically and analytically discussed.
引用
收藏
页码:6645 / 6653
页数:9
相关论文
共 50 条
  • [31] On three-dimensional elastodynamic problems of one-dimensional quasicrystals
    Yaslan, H. Cerdik
    WAVES IN RANDOM AND COMPLEX MEDIA, 2019, 29 (04) : 614 - 630
  • [32] Momentum conserving one-dimensional system with a finite thermal conductivity
    Lee-Dadswell, G. R.
    Turner, E.
    Ettinger, J.
    Moy, M.
    PHYSICAL REVIEW E, 2010, 82 (06):
  • [33] Thermal Conductivity of the One-Dimensional Fermi-Hubbard Model
    Karrasch, C.
    Kennes, D. M.
    Heidrich-Meisner, F.
    PHYSICAL REVIEW LETTERS, 2016, 117 (11)
  • [34] PERTURBATION EXPANSIONS FOR THERMAL-CONDUCTIVITY OF A ONE-DIMENSIONAL CRYSTAL
    ALLEN, KR
    PHYSICAL REVIEW B, 1974, 9 (02): : 781 - 788
  • [35] Thermal conductivity and Lorenz number for one-dimensional ballistic transport
    Greiner, A
    Reggiani, L
    Kuhn, T
    Varani, L
    PHYSICAL REVIEW LETTERS, 1997, 78 (06) : 1114 - 1117
  • [36] Thermal conductivity of a classical one-dimensional Heisenberg spin model
    Savin, AV
    Tsironis, GP
    Zotos, X
    PHYSICAL REVIEW B, 2005, 72 (14):
  • [37] INVERSE DETERMINATION OF THERMAL-CONDUCTIVITY FOR ONE-DIMENSIONAL PROBLEMS
    LAM, TT
    YEUNG, WK
    JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 1995, 9 (02) : 335 - 344
  • [38] PERTURBATION EXPANSIONS FOR THERMAL-CONDUCTIVITY OF A ONE-DIMENSIONAL CRYSTAL
    ALLEN, KR
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1973, 18 (04): : 674 - 674
  • [39] Log-dimensional spectral properties of one-dimensional quasicrystals
    Damanik, D
    Landrigan, M
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (07) : 2209 - 2216
  • [40] One-dimensional model of thermal radiation calorimeter for measuring thermal conductivity and thermal diffusivity
    Sawai, S
    Morimoto, K
    Hisano, K
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 2003, 42 (10): : 6645 - 6652