Simultaneous Resolvability in Families of Corona Product Graphs

被引:1
|
作者
Ramirez-Cruz, Yunior [1 ]
Estrada-Moreno, Alejandro [1 ]
Rodriguez-Velazquez, Juan A. [1 ]
机构
[1] Univ Rovira & Virgili, Dept Engn Informat & Matemat, Av Paisos Catalans 26, E-43007 Tarragona, Spain
关键词
Simultaneous metric dimension; Corona product; Simultaneous adjacency dimension; METRIC DIMENSION; DOMINATION;
D O I
10.1007/s40840-016-0412-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph family defined on a common vertex set V and let d be a distance defined on every graph G is an element of G . A set S subset of V is said to be a simultaneous metric generator for G if for every G is an element of G and every pair of different vertices u,v is an element of V there exists s is an element of S such that d(s,u) not equal d(s,v) . The simultaneous metric dimension of G is the smallest integer k such that there is a simultaneous metric generator for G of cardinality k. We study the simultaneous metric dimension of families composed by corona product graphs. Specifically, we focus on the case of two particular distances defined on every G is an element of G , namely the geodesic distance d(G) and the distance d(G,2) : V x V -> N boolean OR {0} defined as d(G,2)(x,y) = min{d(G)(x,y), 2}.
引用
收藏
页码:1541 / 1560
页数:20
相关论文
共 50 条
  • [31] Harmonious Coloring on Corona Product of Complete Graphs
    Francisco Antonio Muntaner-Batle
    J. Vernold Vivin
    M. Venkatachalam
    National Academy Science Letters, 2014, 37 : 461 - 465
  • [32] Rainbow connection number of corona product of graphs
    Septyanto, Fendy
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2024, 12 (02) : 363 - 378
  • [33] Total Coloring of the Generalized Corona Product of Graphs
    Kavaskar, T.
    Sukumaran, Sreelakshmi
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2025,
  • [34] Harmonious Coloring on Corona Product of Complete Graphs
    Muntaner-Batle, Francisco Antonio
    Vivin, J. Vernold
    Venkatachalam, M.
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2014, 37 (05): : 461 - 465
  • [35] The Dominant Metric Dimension of Corona Product Graphs
    Adirasari, Rembulan Putri
    Suprajitno, Herry
    Susilowati, Liliek
    BAGHDAD SCIENCE JOURNAL, 2021, 18 (02) : 349 - 356
  • [36] On the Local Metric Dimension of Corona Product Graphs
    Juan A. Rodríguez-Velázquez
    Gabriel A. Barragán-Ramírez
    Carlos García Gómez
    Bulletin of the Malaysian Mathematical Sciences Society, 2016, 39 : 157 - 173
  • [37] Resolvability and the upper dimension of graphs
    Chartrand, G
    Poisson, C
    Zhang, P
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2000, 39 (12) : 19 - 28
  • [38] On the power domination number of corona product and join graphs
    Yuliana, I.
    Dafik
    Agustin, I.H.
    Wardani, D.A.R.
    Journal of Physics: Conference Series, 2019, 1211 (01):
  • [39] Local multiset dimension of corona product on tree graphs
    Alfarisi, Ridho
    Susilowati, Liliek
    Dafik
    Kristiana, Arika Indah
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (07)
  • [40] LACEABILITY PROPERTIES IN EDGE TOLERANT CORONA PRODUCT GRAPHS
    Gomathi, P.
    Murali, R.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2020, 10 (03): : 734 - +