Harmonious Coloring on Corona Product of Complete Graphs

被引:0
|
作者
Francisco Antonio Muntaner-Batle
J. Vernold Vivin
M. Venkatachalam
机构
[1] University of Newcastle,Graph Theory and Applications Research Group, Faculty of Engineering and Built Environment, School of Electrical Engineering and Computer Science
[2] University College of Engineering (Anna University Constituent College),Department of Mathematics
[3] RVS Educational Trust’s Group of Institutions,Department of Mathematics, RVS Faculty of Engineering
来源
关键词
Harmonious coloring; Corona product; Pigeonhole principle;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we find the harmonious chromatic number of the corona product of any graph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} of order l\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l$$\end{document} with the complete graph Kn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_n$$\end{document} for l≤n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l \le n$$\end{document}. As a consequence of this work, we also obtain the harmonious chromatic number of t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document} copies of Kn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_n$$\end{document} for t≤n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \le n+1$$\end{document}.
引用
收藏
页码:461 / 465
页数:4
相关论文
共 50 条
  • [1] Harmonious Coloring on Corona Product of Complete Graphs
    Muntaner-Batle, Francisco Antonio
    Vivin, J. Vernold
    Venkatachalam, M.
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2014, 37 (05): : 461 - 465
  • [2] HARMONIOUS COLORING OF MULTICOPY OF COMPLETE GRAPHS
    Muntaner-Batle, Francesc Antoni
    Vivin, Vernold J.
    Venkatachalam, M.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (02): : 384 - 395
  • [3] ON THE HARMONIOUS COLORING OF GRAPHS
    HOPCROFT, JE
    KRISHNAMOORTHY, MS
    SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1983, 4 (03): : 306 - 311
  • [4] Locally identifying coloring of corona product of graphs
    Pavithra, R.
    Reji, T.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2025, 17 (02)
  • [5] Total Coloring of the Generalized Corona Product of Graphs
    Kavaskar, T.
    Sukumaran, Sreelakshmi
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2025,
  • [6] Harmonious Labeling for The Corona Graphs of Small Complete Graph 0
    Pradana, A. G.
    Utami, B.
    Silaban, D. R.
    Sugeng, K. A.
    PROCEEDINGS OF THE 4TH INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES (ISCPMS2018), 2019, 2168
  • [7] r-Dynamic coloring of the corona product of graphs
    Kristiana, Arika Indah
    Utoyo, M. Imam
    Alfarisi, Ridho
    Dafik
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2020, 12 (02)
  • [8] ON THE HARMONIOUS COLORING OF COLLECTIONS OF GRAPHS
    GEORGES, JP
    JOURNAL OF GRAPH THEORY, 1995, 20 (02) : 241 - 254
  • [9] The harmonious coloring problem is NP-complete for interval and permutation graphs
    Asdre, Katerina
    Ioannidou, Kyriaki
    Nikolopoulos, Stavros D.
    DISCRETE APPLIED MATHEMATICS, 2007, 155 (17) : 2377 - 2382
  • [10] On total coloring the direct product of complete graphs
    Castonguay, D.
    de Figueiredo, C. M. H.
    Kowada, L. A. B.
    Patrao, C. S. R.
    Sasaki, D.
    Valencia-Pabon, M.
    PROCEEDINGS OF THE XI LATIN AND AMERICAN ALGORITHMS, GRAPHS AND OPTIMIZATION SYMPOSIUM, 2021, 195 : 306 - 314