Approximation Algorithms for the Gromov Hyperbolicity of Discrete Metric Spaces

被引:0
|
作者
Duan, Ran [1 ]
机构
[1] Max Planck Inst Informat, D-66123 Saarbrucken, Germany
来源
关键词
RECTANGULAR MATRIX MULTIPLICATION;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper discusses new approximation algorithms for computing the Gromov hyperbolicity of an n-point discrete metric space. We give a (1 + epsilon)-approximation algorithm with running time (O) over tilde(epsilon (1)n(1 vertical bar omega)), where O(n(omega)) = O(n(2.373)) is the time complexity of matrix multiplications. Here an alpha-approximation delta' means delta' <= delta' <= alpha delta' for the Gromov hyperbolicity delta*. We also give a (2 + epsilon)-approximation algorithm with running time (O) over tilde(epsilon(-1)n(omega)). These are faster than the previous O(n((5+omega)/2))-time algorithm for the exact solution and the O(n((3+omega)/2))-time algorithm for a 2-approximation [Fournier, Ismail and Vigneron 2012], which directly perform (max, min)-product of matrices.
引用
收藏
页码:285 / 293
页数:9
相关论文
共 50 条
  • [41] On the Gromov hyperbolicity of the Kobayashi metric on strictly pseudoconvex regions in the almost complex case
    Léa Blanc-Centi
    Mathematische Zeitschrift, 2009, 263 : 481 - 498
  • [42] The Gromov–Hausdorff metric on the space of compact metric spaces is strictly intrinsic
    A. O. Ivanov
    N. K. Nikolaeva
    A. A. Tuzhilin
    Mathematical Notes, 2016, 100 : 883 - 885
  • [43] Geometric characterizations of Gromov hyperbolicity
    Balogh, ZM
    Buckley, SM
    INVENTIONES MATHEMATICAE, 2003, 153 (02) : 261 - 301
  • [44] GROMOV HYPERBOLICITY AND QUASIHYPERBOLIC GEODESICS
    Koskela, Pekka
    Lammi, Paivi
    Manojlovic, Vesna
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2014, 47 (05): : 975 - 990
  • [45] Gromov hyperbolicity of the Hilbert distance
    Fathi Haggui
    Houcine Guermazi
    Annals of Global Analysis and Geometry, 2022, 61 : 235 - 251
  • [46] Quantum Metric Spaces and the Gromov-Hausdorff Propinquity
    Latremoliere, Frederic
    NONCOMMUTATIVE GEOMETRY AND OPTIMAL TRANSPORT, 2016, 676 : 47 - +
  • [47] Equivalence of Gromov-Prohorov- and Gromov's (□)under-barλ-metric on the space of metric measure spaces
    Loehr, Wolfgang
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2013, 18 : 1 - 10
  • [48] The Kobayashi Metric and Gromov Hyperbolicity on Pseudoconvex Domains of Finite Type in C2
    Li, Haichou
    Pu, Xingsi
    Wang, Lang
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (01)
  • [49] Quasi-metric antipodal spaces and maximal Gromov hyperbolic spaces
    Kingshook Biswas
    Geometriae Dedicata, 2024, 218
  • [50] ON GROMOV-HAUSDORFF CONVERGENCE FOR OPERATOR METRIC SPACES
    Kerr, David
    Li, Hanfeng
    JOURNAL OF OPERATOR THEORY, 2009, 62 (01) : 83 - 109