Approximation Algorithms for the Gromov Hyperbolicity of Discrete Metric Spaces

被引:0
|
作者
Duan, Ran [1 ]
机构
[1] Max Planck Inst Informat, D-66123 Saarbrucken, Germany
来源
关键词
RECTANGULAR MATRIX MULTIPLICATION;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper discusses new approximation algorithms for computing the Gromov hyperbolicity of an n-point discrete metric space. We give a (1 + epsilon)-approximation algorithm with running time (O) over tilde(epsilon (1)n(1 vertical bar omega)), where O(n(omega)) = O(n(2.373)) is the time complexity of matrix multiplications. Here an alpha-approximation delta' means delta' <= delta' <= alpha delta' for the Gromov hyperbolicity delta*. We also give a (2 + epsilon)-approximation algorithm with running time (O) over tilde(epsilon(-1)n(omega)). These are faster than the previous O(n((5+omega)/2))-time algorithm for the exact solution and the O(n((3+omega)/2))-time algorithm for a 2-approximation [Fournier, Ismail and Vigneron 2012], which directly perform (max, min)-product of matrices.
引用
收藏
页码:285 / 293
页数:9
相关论文
共 50 条
  • [21] Gromov hyperbolicity and the Kobayashi metric on convex domains of finite type
    Zimmer, Andrew M.
    MATHEMATISCHE ANNALEN, 2016, 365 (3-4) : 1425 - 1498
  • [22] Estimates of the Kobayashi metric and Gromov hyperbolicity on convex domains of finite type
    Wang, Hongyu
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2024, 110 (02):
  • [23] GROMOV HYPERBOLICITY OF THE (j)over-tildeG METRIC AND BOUNDARY CORRESPONDENCE
    Zhou, Qingshan
    Ponnusamy, Saminathan
    Guan, Tiantian
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (07) : 2839 - 2847
  • [24] Discrete groups of packed, non-positively curved, Gromov hyperbolic metric spaces
    Cavallucci, Nicola
    Sambusetti, Andrea
    GEOMETRIAE DEDICATA, 2024, 218 (02)
  • [25] Discrete groups of packed, non-positively curved, Gromov hyperbolic metric spaces
    Nicola Cavallucci
    Andrea Sambusetti
    Geometriae Dedicata, 2024, 218
  • [26] Discrete approximation of symmetric jump processes on metric measure spaces
    Zhen-Qing Chen
    Panki Kim
    Takashi Kumagai
    Probability Theory and Related Fields, 2013, 155 : 703 - 749
  • [27] Discrete approximation of symmetric jump processes on metric measure spaces
    Chen, Zhen-Qing
    Kim, Panki
    Kumagai, Takashi
    PROBABILITY THEORY AND RELATED FIELDS, 2013, 155 (3-4) : 703 - 749
  • [28] Pseudoconvexity and Gromov hyperbolicity
    Balogh, ZM
    Bonk, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (07): : 597 - 602
  • [29] Metric transforms yielding Gromov hyperbolic spaces
    George Dragomir
    Andrew Nicas
    Geometriae Dedicata, 2019, 200 : 331 - 350
  • [30] Gromov-hausdorff convergence of metric spaces
    Petersen, Peter
    Proceedings of Symposia in Pure Mathematics, 1993, 54 (02):