Approximation Algorithms for the Gromov Hyperbolicity of Discrete Metric Spaces

被引:0
|
作者
Duan, Ran [1 ]
机构
[1] Max Planck Inst Informat, D-66123 Saarbrucken, Germany
来源
关键词
RECTANGULAR MATRIX MULTIPLICATION;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper discusses new approximation algorithms for computing the Gromov hyperbolicity of an n-point discrete metric space. We give a (1 + epsilon)-approximation algorithm with running time (O) over tilde(epsilon (1)n(1 vertical bar omega)), where O(n(omega)) = O(n(2.373)) is the time complexity of matrix multiplications. Here an alpha-approximation delta' means delta' <= delta' <= alpha delta' for the Gromov hyperbolicity delta*. We also give a (2 + epsilon)-approximation algorithm with running time (O) over tilde(epsilon(-1)n(omega)). These are faster than the previous O(n((5+omega)/2))-time algorithm for the exact solution and the O(n((3+omega)/2))-time algorithm for a 2-approximation [Fournier, Ismail and Vigneron 2012], which directly perform (max, min)-product of matrices.
引用
收藏
页码:285 / 293
页数:9
相关论文
共 50 条
  • [1] Gromov hyperbolicity through decomposition of metric spaces
    Rodríguez, JM
    Tourís, E
    ACTA MATHEMATICA HUNGARICA, 2004, 103 (1-2) : 107 - 138
  • [2] Gromov hyperbolicity through decomposition of metric spaces
    José M. Rodríguez
    Eva Tourís
    Acta Mathematica Hungarica, 2004, 103 : 107 - 138
  • [3] Computing the Gromov hyperbolicity of a discrete metric space
    Fournier, Herve
    Ismail, Anas
    Vigneron, Antoine
    INFORMATION PROCESSING LETTERS, 2015, 115 (6-8) : 576 - 579
  • [5] Apollonian metric, uniformity and Gromov hyperbolicity
    Li, Yaxiang
    Vuorinen, Matti
    Zhou, Qingshan
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2020, 65 (02) : 215 - 228
  • [6] Sharp estimates of the Kobayashi metric and Gromov hyperbolicity
    Bertrand, Florian
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (02) : 825 - 844
  • [7] The Nikolov-Andreev Metric and Gromov Hyperbolicity
    Luo, Qianghua
    Rasila, Antti
    Wang, Ye
    Zhou, Qingshan
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (03)
  • [8] Gromov Hyperbolicity, John Spaces, and Quasihyperbolic Geodesics
    Qingshan Zhou
    Yaxiang Li
    Antti Rasila
    The Journal of Geometric Analysis, 2022, 32
  • [9] Gromov hyperbolicity and the Kobayashi metric on strictly pseudoconvex domains
    Balogh, ZM
    Bonk, M
    COMMENTARII MATHEMATICI HELVETICI, 2000, 75 (03) : 504 - 533
  • [10] Gromov Hyperbolicity, John Spaces, and Quasihyperbolic Geodesics
    Zhou, Qingshan
    Li, Yaxiang
    Rasila, Antti
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (09)