A novel enzymatic glucose biosensor and sensitive non-enzymatic hydrogen peroxide sensor based on graphene and cobalt oxide nanoparticles composite modified glassy carbon electrode

被引:112
|
作者
Karuppiah, Chelladurai [1 ]
Palanisamy, Selvakumar [1 ]
Chen, Shen-Ming [1 ]
Veeramani, Vediyappan [1 ]
Periakaruppan, Prakash [2 ]
机构
[1] Natl Taipei Univ Technol, Dept Chem Engn & Biotechnol, Taipei 106, Taiwan
[2] Thiagarajar Coll, Post Grad & Res Dept Chem, Madurai 625009, Tamil Nadu, India
来源
关键词
Graphene; Cobalt oxide nanoparticles; Glucose oxidase; Direct electrochemistry; Glucose biosensor; Non-enzymatic hydrogen peroxide sensor; DIRECT ELECTROCHEMISTRY; PERFORMANCE; REDUCTION; OXIDATION;
D O I
10.1016/j.snb.2014.02.034
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In the present study, we have demonstrated the fabrication of novel enzymatic glucose biosensor using glucose oxidase (GOD) as a model enzyme which has been immobilized onto the graphene (GF) and cobalt oxide nanoparticles (Co3O4-NPs) composite modified electrode. The GF/Co3O4-NPs composite was prepared by hydrothermal method and characterized by using scanning electron microscopy, X-ray diffraction and elemental analysis. The GOD immobilized GF/Co3O4-NPs modified electrode shows a well defined redox behaviour indicating the reversible proton and electron transfer reaction of GOD. A heterogeneous electron transfer rate constant (K-s) of immobilized GOD has been calculated to be 3.52 s(-1) which is much higher than that of GOD immobilized GF supports. The fast electron transfer of GOD is attributed to the excellent biocompatibility of Co3O4-NPs and high conductivity of the GF. The fabricated glucose biosensor exhibits a wider linear response for glucose from 0.5 mM to 16.5 mM with the sensitivity of 13.52 mu A mM(-1) cm(-2). In addition, a non-enzymatic H2O2 sensor has been further developed using GF/Co3O4-NPs composite modified electrode. The GF/Co3O4-NPs composite electrode shows an excellent electrocatalytic activity towards H2O2 with the response time of <10 s. The H2O2 response at GF/Co3O4-NPs composite modified electrode displays a linear response ranging from 0.2 to 211.5 mu M with a limit of detection of 0.06 mu M. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:450 / 456
页数:7
相关论文
共 50 条
  • [31] A sensitive non-enzymatic glucose sensor in alkaline media based on Cu/MnO2-modified glassy carbon electrode
    Meng, Zuchao
    Sheng, Qinglin
    Zheng, Jianbin
    JOURNAL OF THE IRANIAN CHEMICAL SOCIETY, 2012, 9 (06) : 1007 - 1014
  • [32] A sensitive non-enzymatic glucose sensor in alkaline media based on Cu/MnO2-modified glassy carbon electrode
    Zuchao Meng
    Qinglin Sheng
    Jianbin Zheng
    Journal of the Iranian Chemical Society, 2012, 9 : 1007 - 1014
  • [33] Non-enzymatic hydrogen peroxide sensor based on a gold electrode modified with granular cuprous oxide nanowires
    Yan, Zhongke
    Zhao, Jianwei
    Qin, Lirong
    Mu, Fan
    Wang, Ping
    Feng, Xining
    MICROCHIMICA ACTA, 2013, 180 (1-2) : 145 - 150
  • [34] Non-enzymatic hydrogen peroxide sensor based on a gold electrode modified with granular cuprous oxide nanowires
    Zhongke Yan
    Jianwei Zhao
    Lirong Qin
    Fan Mu
    Ping Wang
    Xining Feng
    Microchimica Acta, 2013, 180 : 145 - 150
  • [35] A non-enzymatic hydrogen peroxide sensor based on poly(vinyl alcohol)-multiwalled carbon nanotubes-platinum nanoparticles hybrids modified glassy carbon electrode
    Fang, Yuxin
    Zhang, Di
    Qin, Xia
    Miao, Zhiying
    Takahashi, Shigehiro
    Anzai, Jun-ichi
    Chen, Qiang
    ELECTROCHIMICA ACTA, 2012, 70 : 266 - 271
  • [36] Carbon nanoparticles based non-enzymatic glucose sensor
    Pulidindi, Indra Neel
    Gedanken, Aharon
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL ANALYTICAL CHEMISTRY, 2014, 94 (01) : 28 - 35
  • [37] A sensitive non-enzymatic electrochemical sensor based on acicular manganese dioxide modified graphene nanosheets composite for hydrogen peroxide detection
    Guan, Jin-Feng
    Huang, Zhao-Ning
    Zou, Jiao
    Jiang, Xin-Yu
    Peng, Dong-Ming
    Yu, Jin-Gang
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2020, 190
  • [38] Graphene oxide-Cu(II) composite electrode for non-enzymatic determination of hydrogen peroxide
    Muralikrishna, S.
    Cheunkar, Sarawut
    Lertanantawong, Benchaporn
    Ramakrishnappa, T.
    Nagaraju, D. H.
    Surareungchai, Werasak
    Balakrishna, R. Geetha
    Reddy, K. Ramakrishna
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2016, 776 : 59 - 65
  • [39] Copper oxide nanoparticles and ionic liquid modified carbon electrode for the non-enzymatic electrochemical sensing of hydrogen peroxide
    Ping, Jianfeng
    Ru, Shiping
    Fan, Kai
    Wu, Jian
    Ying, Yibin
    MICROCHIMICA ACTA, 2010, 171 (1-2) : 117 - 123
  • [40] Copper oxide nanoparticles and ionic liquid modified carbon electrode for the non-enzymatic electrochemical sensing of hydrogen peroxide
    Jianfeng Ping
    Shiping Ru
    Kai Fan
    Jian Wu
    Yibin Ying
    Microchimica Acta, 2010, 171 : 117 - 123