A novel enzymatic glucose biosensor and sensitive non-enzymatic hydrogen peroxide sensor based on graphene and cobalt oxide nanoparticles composite modified glassy carbon electrode

被引:112
|
作者
Karuppiah, Chelladurai [1 ]
Palanisamy, Selvakumar [1 ]
Chen, Shen-Ming [1 ]
Veeramani, Vediyappan [1 ]
Periakaruppan, Prakash [2 ]
机构
[1] Natl Taipei Univ Technol, Dept Chem Engn & Biotechnol, Taipei 106, Taiwan
[2] Thiagarajar Coll, Post Grad & Res Dept Chem, Madurai 625009, Tamil Nadu, India
来源
关键词
Graphene; Cobalt oxide nanoparticles; Glucose oxidase; Direct electrochemistry; Glucose biosensor; Non-enzymatic hydrogen peroxide sensor; DIRECT ELECTROCHEMISTRY; PERFORMANCE; REDUCTION; OXIDATION;
D O I
10.1016/j.snb.2014.02.034
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In the present study, we have demonstrated the fabrication of novel enzymatic glucose biosensor using glucose oxidase (GOD) as a model enzyme which has been immobilized onto the graphene (GF) and cobalt oxide nanoparticles (Co3O4-NPs) composite modified electrode. The GF/Co3O4-NPs composite was prepared by hydrothermal method and characterized by using scanning electron microscopy, X-ray diffraction and elemental analysis. The GOD immobilized GF/Co3O4-NPs modified electrode shows a well defined redox behaviour indicating the reversible proton and electron transfer reaction of GOD. A heterogeneous electron transfer rate constant (K-s) of immobilized GOD has been calculated to be 3.52 s(-1) which is much higher than that of GOD immobilized GF supports. The fast electron transfer of GOD is attributed to the excellent biocompatibility of Co3O4-NPs and high conductivity of the GF. The fabricated glucose biosensor exhibits a wider linear response for glucose from 0.5 mM to 16.5 mM with the sensitivity of 13.52 mu A mM(-1) cm(-2). In addition, a non-enzymatic H2O2 sensor has been further developed using GF/Co3O4-NPs composite modified electrode. The GF/Co3O4-NPs composite electrode shows an excellent electrocatalytic activity towards H2O2 with the response time of <10 s. The H2O2 response at GF/Co3O4-NPs composite modified electrode displays a linear response ranging from 0.2 to 211.5 mu M with a limit of detection of 0.06 mu M. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:450 / 456
页数:7
相关论文
共 50 条
  • [21] Non-enzymatic hydrogen peroxide sensor based on a nanoporous gold electrode modified with platinum nanoparticles
    Guang Yin
    Ling Xing
    Xiu-Ju Ma
    Jun Wan
    Chemical Papers, 2014, 68 : 435 - 441
  • [22] Gold nanoparticles directly modified glassy carbon electrode for non-enzymatic detection of glucose
    Chang, Gang
    Shu, Honghui
    Ji, Kai
    Oyama, Munetaka
    Liu, Xiong
    He, Yunbin
    APPLIED SURFACE SCIENCE, 2014, 288 : 524 - 529
  • [23] A novel green synthesized NiO nanoparticles modified glassy carbon electrode for non-enzymatic glucose sensing
    Youcef, Messai
    Hamza, Bezzi
    Nora, Hellal
    Walid, Belbacha
    Salima, Messali
    Ahmed, Belghidoum
    Malika, Foudia
    Marc, Schmutz
    Christian, Blanck
    Wassila, Derafa
    Eddine, Mekki Djamel
    Larbi, Zerroual
    MICROCHEMICAL JOURNAL, 2022, 178
  • [24] Non-enzymatic hydrogen peroxide sensor using an electrode modified with iron pentacyanonitrosylferrate nanoparticles
    Habib Razmi
    Rahim Mohammad-Rezaei
    Microchimica Acta, 2010, 171 : 257 - 265
  • [25] Non-enzymatic hydrogen peroxide sensor using an electrode modified with iron pentacyanonitrosylferrate nanoparticles
    Razmi, Habib
    Mohammad-Rezaei, Rahim
    MICROCHIMICA ACTA, 2010, 171 (3-4) : 257 - 265
  • [26] A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode
    Luo, Jing
    Jiang, Sisi
    Zhang, Hongyan
    Jiang, Jinqiang
    Liu, Xiaoya
    ANALYTICA CHIMICA ACTA, 2012, 709 : 47 - 53
  • [27] A simple non-enzymatic hydrogen peroxide sensor using gold nanoparticles-graphene-chitosan modified electrode
    Jia, Ningming
    Huang, Baozhen
    Chen, Lina
    Tan, Liang
    Yao, Shouzhuo
    SENSORS AND ACTUATORS B-CHEMICAL, 2014, 195 : 165 - 170
  • [28] Non-enzymatic hydrogen peroxide sensor based on MnO2-ordered mesoporous carbon composite modified electrode
    Luo, Liqiang
    Li, Fang
    Zhu, Limei
    Zhang, Zhao
    Ding, Yaping
    Deng, Dongmei
    ELECTROCHIMICA ACTA, 2012, 77 : 179 - 183
  • [29] Non-enzymatic sensing of hydrogen peroxide using a glassy carbon electrode modified with a composite consisting of chitosan‐encapsulated graphite and platinum nanoparticles
    Tse-Wei Chen
    Selvakumar Palanisamy
    Shen-Ming Chen
    Microchimica Acta, 2016, 183 : 2861 - 2869
  • [30] A non-enzymatic sensor for hydrogen peroxide based on polyaniline, multiwalled carbon nanotubes and gold nanoparticles modified Au electrode
    Narang, Jagriti
    Chauhan, Nidhi
    Pundir, C. S.
    ANALYST, 2011, 136 (21) : 4460 - 4466