Comparisons of the dynamical characteristics of a semi-submersible floating offshore wind turbine based on two different blade concepts

被引:38
|
作者
Chen, Jiahao [1 ,3 ]
Hu, Zhiqiang [2 ]
Wan, Decheng [1 ,3 ]
Xiao, Qing [4 ]
机构
[1] Shanghai Jiao Tong Univ, State Key Lab Ocean Engn, Shanghai 200240, Peoples R China
[2] Newcastle Univ, Sch Engn, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[3] Shanghai Jiao Tong Univ, Collaborat Innovat Ctr Adv Ship & Deep Sea Explor, Shanghai, Peoples R China
[4] Univ Strathclyde, Dept Naval Architecture Ocean & Marine Engn, Glasgow G4 0LZ, Lanark, Scotland
关键词
Semi-submersible floating wind turbine; Model test; Reynolds number; Geometrically matched blade; Performance-matched blade; MODEL; VALIDATION; RESPONSES;
D O I
10.1016/j.oceaneng.2018.01.104
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Scaled model tests are important for the development and validation of floating offshore wind turbines. However, it has been found that Reynolds number dissimilitude between scales deteriorates the aerodynamic performance of floating offshore wind turbines when using model test investigation methodologies. To overcome this challenge, a semi-submersible floating offshore wind turbine model test with two different solutions, namely a geometrically matched blade model and a performance-matched blade model, was conducted in a wind/wave basin. Subsequently, a series of comparisons of the dynamical characteristics of these two models were made to clarify the respective validity of the two models and provide references for future floating offshore wind turbine model optimization. It is found that both model methods are capable of reflecting the essential dynamical characteristics but there are some differences in system eigenfrequencies and response amplitudes. Compared with the geometrically matched blade model, the performance-matched blade model has enhanced aerodynamic performance. Nevertheless, the overweight blades within the performance-matched blade model yields inevitable discrepancies compared with the original design.
引用
收藏
页码:305 / 318
页数:14
相关论文
共 50 条
  • [31] RESEARCH ON DYNAMIC CHARACTERISTICS OF SEMI-SUBMERSIBLE FLOATING WIND TURBINE CONSIDERING VISCOUS EFFECT
    Cao S.
    Cheng Y.
    Fan X.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2023, 44 (02): : 153 - 159
  • [32] Analysis of Dynamic Characteristics of an Ultra-Large Semi-Submersible Floating Wind Turbine
    Zhao, Zhixin
    Li, Xin
    Wang, Wenhua
    Shi, Wei
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2019, 7 (06)
  • [33] Dynamic Response Analysis of Semi-Submersible Floating Wind Turbine with Different Wave Conditions
    Jiang M.
    Qiao G.
    Chen J.
    Huang X.
    Zhang L.
    Wen Y.
    Zhang Y.
    Energy Engineering: Journal of the Association of Energy Engineering, 2023, 120 (11): : 2517 - 2529
  • [34] A study on a semi-submersible floating offshore wind energy conversion system
    Shimada, K.
    Ohyama, T.
    Miyakawa, M.
    Ishihara, T.
    Phuc, P. V.
    Sukegawa, H.
    PROCEEDINGS OF THE SEVENTEENTH (2007) INTERNATIONAL OFFSHORE AND POLAR ENGINEERING CONFERENCE, VOL 1- 4, PROCEEDINGS, 2007, : 348 - 355
  • [35] OPTIMIZATION OF SEMI-SUBMERSIBLE HULL DESIGN FOR FLOATING OFFSHORE WIND TURBINES
    Hsu, I-Jen
    Ivanov, Glib
    Ma, Kai-Tung
    Huang, Zheng-Zhang
    Wu, Hua-Tung
    Huang, Yun-Tzu
    Chou, Mike
    PROCEEDINGS OF ASME 2022 41ST INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE & ARCTIC ENGINEERING, OMAE2022, VOL 8, 2022,
  • [36] DEVELOPMENT OF 12MW CROSS-SHAPED SEMI-SUBMERSIBLE FLOATING OFFSHORE WIND TURBINE
    Matsuoka, Ryo
    Takeda, Takashi
    Kusumoto, Hiroki
    Kuwada, Shu
    Yoshimoto, Haruki
    Kamizawa, Ken
    PROCEEDINGS OF ASME 2022 41ST INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE & ARCTIC ENGINEERING, OMAE2022, VOL 8, 2022,
  • [37] Simplified Strength Assessment for Preliminary Structural Design of Floating Offshore Wind Turbine Semi-Submersible Platform
    Dong, Yan
    Zhang, Jian
    Zhong, Shaofeng
    Garbatov, Yordan
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (02)
  • [38] A novel structural form of semi-submersible platform for a floating offshore wind turbine with hydrodynamic performance analysis
    Lai, Binbin
    Zhao, Chengbi
    Chen, Xiaoming
    Tang, Youhong
    Lin, Wei
    APPLIED MECHANICS AND MATERIALS II, PTS 1 AND 2, 2014, 477-478 : 109 - +
  • [39] VERIFICATION STUDY OF CFD SIMULATION OF SEMI-SUBMERSIBLE FLOATING OFFSHORE WIND TURBINE UNDER REGULAR WAVES
    Wang, Yu
    Chen, Hamn-Ching
    Vaz, Guilherme
    Mewes, Simon
    PROCEEDINGS OF THE ASME 2021 3RD INTERNATIONAL OFFSHORE WIND TECHNICAL CONFERENCE (IOWTC2021), 2021,
  • [40] Rational upscaling of a semi-submersible floating platform supporting a wind turbine
    Leimeister, Mareike
    Bachynski, Erin E.
    Muskulus, Michael
    Thomas, Philipp
    13TH DEEP SEA OFFSHORE WIND R&D CONFERENCE, EERA DEEPWIND'2016, 2016, 94 : 434 - 442