Comparisons of the dynamical characteristics of a semi-submersible floating offshore wind turbine based on two different blade concepts

被引:38
|
作者
Chen, Jiahao [1 ,3 ]
Hu, Zhiqiang [2 ]
Wan, Decheng [1 ,3 ]
Xiao, Qing [4 ]
机构
[1] Shanghai Jiao Tong Univ, State Key Lab Ocean Engn, Shanghai 200240, Peoples R China
[2] Newcastle Univ, Sch Engn, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[3] Shanghai Jiao Tong Univ, Collaborat Innovat Ctr Adv Ship & Deep Sea Explor, Shanghai, Peoples R China
[4] Univ Strathclyde, Dept Naval Architecture Ocean & Marine Engn, Glasgow G4 0LZ, Lanark, Scotland
关键词
Semi-submersible floating wind turbine; Model test; Reynolds number; Geometrically matched blade; Performance-matched blade; MODEL; VALIDATION; RESPONSES;
D O I
10.1016/j.oceaneng.2018.01.104
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Scaled model tests are important for the development and validation of floating offshore wind turbines. However, it has been found that Reynolds number dissimilitude between scales deteriorates the aerodynamic performance of floating offshore wind turbines when using model test investigation methodologies. To overcome this challenge, a semi-submersible floating offshore wind turbine model test with two different solutions, namely a geometrically matched blade model and a performance-matched blade model, was conducted in a wind/wave basin. Subsequently, a series of comparisons of the dynamical characteristics of these two models were made to clarify the respective validity of the two models and provide references for future floating offshore wind turbine model optimization. It is found that both model methods are capable of reflecting the essential dynamical characteristics but there are some differences in system eigenfrequencies and response amplitudes. Compared with the geometrically matched blade model, the performance-matched blade model has enhanced aerodynamic performance. Nevertheless, the overweight blades within the performance-matched blade model yields inevitable discrepancies compared with the original design.
引用
收藏
页码:305 / 318
页数:14
相关论文
共 50 条
  • [21] Position Control of an Offshore Wind Turbine with a Semi-submersible Floating Platform Using the Aerodynamic Force
    Han, Chenlu
    Nagamune, Ryozo
    2016 IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (CCECE), 2016,
  • [22] Dynamic response characteristics of a new semi-submersible floating wind turbine in different current velocity conditions
    Le C.-H.
    Li K.
    Zhang P.-Y.
    Ding H.-Y.
    Chuan Bo Li Xue/Journal of Ship Mechanics, 2023, 40 (02): : 185 - 194
  • [23] A CFD Study of Vortex-Induced Motions of a Semi-Submersible Floating Offshore Wind Turbine
    Liu, Yuanchuan
    Ge, Dunjie
    Bai, Xinglan
    Li, Liang
    ENERGIES, 2023, 16 (02)
  • [24] CFD SIMULATION OF SEMI-SUBMERSIBLE FLOATING OFFSHORE WIND TURBINE UNDER PITCH DECAY MOTION
    Wang, Yu
    Chen, Hamn-Ching
    Vaz, Guilherme
    Burmester, Simon
    PROCEEDINGS OF THE ASME 2ND INTERNATIONAL OFFSHORE WIND TECHNICAL CONFERENCE, 2019, 2020,
  • [25] Fully Coupled Aero-hydrodynamic Analysis of a Semi-submersible Floating Offshore Wind Turbine
    Huang H.
    Liu Q.
    Yue M.
    Miao W.
    Li C.
    Ma L.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2024, 44 (11): : 4367 - 4375
  • [26] Structure design and global strength analysis for semi-submersible floating foundation of offshore wind turbine
    Tang, Y., 1600, Editorial office of Ship Building of China, China (54):
  • [27] Experimental study on VIM of semi-submersible offshore wind turbine
    Wei D.
    Bai X.
    Huang W.
    Chang S.
    Chen J.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2021, 42 (02): : 179 - 184
  • [28] Numerical Modelling of a Floating Wind Turbine Semi-Submersible Platform
    Galera-Calero, Lander
    Blanco, Jesus Maria
    Iglesias, Gregorio
    APPLIED SCIENCES-BASEL, 2021, 11 (23):
  • [29] HYDRODYNAMIC RESPONSE OF SEMI-SUBMERSIBLE PLATFORM OF FLOATING OFFSHORE WIND TURBINE UNDER EXTREME WAVES
    Cul, Ting
    He, Guanghua
    Wang, Widar Weizhi
    Yuan, Lihao
    Bihs, Hans
    PROCEEDINGS OF ASME 2024 43RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, OMAE2024, VOL 6, 2024,
  • [30] DYNAMIC RESPONSE ANALYSIS OF SEMI-SUBMERSIBLE FLOATING WIND TURBINE UNDER DIFFERENT WIND CONDITIONS
    Li C.
    Wang Y.
    Jiang M.
    Zhang L.
    Huang X.
    Yang T.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2023, 44 (04): : 85 - 91