机构:
Hungarian Acad Sci, Alfred Renyi Inst Math, POB 127, H-1364 Budapest, HungaryHungarian Acad Sci, Alfred Renyi Inst Math, POB 127, H-1364 Budapest, Hungary
Gerener, Daniel
[1
]
机构:
[1] Hungarian Acad Sci, Alfred Renyi Inst Math, POB 127, H-1364 Budapest, Hungary
In this note we obtain upper bounds on the number of hyperedges in 3-uniform hypergraphs not containing a Berge cycle of given odd length. We improve the bound given by Furedi and Ozkahya in 2017. The result follows from a more general theorem. We also obtain some new results for Berge cliques.
机构:
Cent European Univ, Alfred Renyi Math Res Inst, Budapest, HungaryCent European Univ, Alfred Renyi Math Res Inst, Budapest, Hungary
Xiao, Chuanqi
Zamora, Oscar
论文数: 0引用数: 0
h-index: 0
机构:
Cent European Univ, Budapest, Hungary
Univ Costa Rica, Ctr Invest Matemat Pura & Aplicada CIMPA, Escuela Matemat, San Jose, Costa RicaCent European Univ, Alfred Renyi Math Res Inst, Budapest, Hungary
机构:
Nanjing Normal Univ, Solatido Coll, Sch Math Sci, Inst Math, 1 Wenyuan Rd, Nanjing 210023, Jiangsu, Peoples R ChinaNanjing Normal Univ, Solatido Coll, Sch Math Sci, Inst Math, 1 Wenyuan Rd, Nanjing 210023, Jiangsu, Peoples R China
Xu, Baogang
Yu, Gexin
论文数: 0引用数: 0
h-index: 0
机构:
Coll William & Mary, Dept Math, Williamsburg, VA 23185 USA
Huazhong Normal Univ, Sch Math & Stat, Wuhan, Hubei, Peoples R ChinaNanjing Normal Univ, Solatido Coll, Sch Math Sci, Inst Math, 1 Wenyuan Rd, Nanjing 210023, Jiangsu, Peoples R China
Yu, Gexin
Zha, Xiaoya
论文数: 0引用数: 0
h-index: 0
机构:
Middle Tennessee State Univ, Dept Math Sci, Murfreesboro, TN 37132 USANanjing Normal Univ, Solatido Coll, Sch Math Sci, Inst Math, 1 Wenyuan Rd, Nanjing 210023, Jiangsu, Peoples R China
Zha, Xiaoya
ELECTRONIC JOURNAL OF COMBINATORICS,
2017,
24
(04):