Turan numbers for odd wheels

被引:12
|
作者
Dzido, Tomasz [1 ]
Jastrzebski, Andrzej [2 ]
机构
[1] Univ Gdansk, Fac Math Phys & Informat, Inst Informat, PL-80308 Gdansk, Poland
[2] Gdansk Univ Technol, Fac Elect Telecommun & Informat, Dept Algorithms & Syst Modeling, PL-80233 Gdansk, Poland
关键词
Turan numbers; Odd wheels;
D O I
10.1016/j.disc.2017.10.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Turan number ex(n, G) is the maximum number of edges in any n-vertex graph that does not contain a subgraph isomorphic to G. A wheel W-n is a graph on n vertices obtained from a Cn-1 by adding one vertex w and making w adjacent to all vertices of the Cn-1. We obtain two exact values for small wheels: ex(n, W-5) = left perpendicularn(2/4) + n/2right perpendicular, ex(n, W-7) = left perpendicularn(2)/4 + n/2 +1right perpendicular. Given that ex(n, W-6) is already known, this paper completes the spectrum for all wheels up to 7 vertices. In addition, we present the construction which gives us the lower bound ex(n, W2k+1) > + left perpendicularn(2)/4 + right perpendicular + left perpendicularn/2 right perpendicular in general case. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:1150 / 1154
页数:5
相关论文
共 50 条
  • [1] A Note on Turan Numbers for Even Wheels
    Dzido, Tomasz
    GRAPHS AND COMBINATORICS, 2013, 29 (05) : 1305 - 1309
  • [2] The Lower and Upper Bounds of Turan Number for Odd Wheels
    Kim, Byeong Moon
    Song, Byung Chul
    Hwang, Woonjae
    GRAPHS AND COMBINATORICS, 2021, 37 (03) : 919 - 932
  • [3] Generalized rainbow Turan numbers of odd cycles
    Balogh, Jozsef
    Delcourt, Michelle
    Heath, Emily
    Li, Lina
    DISCRETE MATHEMATICS, 2022, 345 (02)
  • [4] Turan numbers of bipartite graphs plus an odd cycle
    Allen, Peter
    Keevash, Peter
    Sudakov, Benny
    Verstraete, Jacques
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2014, 106 : 134 - 162
  • [5] The Ramsey numbers of wheels versus odd cycles
    Zhang, Yanbo
    Zhang, Yunqing
    Chen, Yaojun
    DISCRETE MATHEMATICS, 2014, 323 : 76 - 80
  • [6] The Ramsey Numbers of Large cycles Versus Odd Wheels
    E. T. Surahmat
    Ioan Baskoro
    Graphs and Combinatorics, 2008, 24 : 53 - 58
  • [7] The Ramsey numbers of large cycles versus odd wheels
    Surahmat
    Baskoro, E. T.
    Tomescu, Ioan
    GRAPHS AND COMBINATORICS, 2008, 24 (01) : 53 - 58
  • [8] The Ramsey numbers for cycles versus wheels of odd order
    Chen, Yaojun
    Cheng, T. C. Edwin
    Miao, Zhengke
    Ng, C. T.
    APPLIED MATHEMATICS LETTERS, 2009, 22 (12) : 1875 - 1876
  • [9] Ramsey numbers of odd cycles versus larger even wheels
    Alweiss, Ryan
    DISCRETE MATHEMATICS, 2018, 341 (04) : 981 - 989
  • [10] Star-critical Ramsey Numbers of Wheels Versus Odd Cycles
    Yu-chen LIU
    Yao-jun CHEN
    Acta Mathematicae Applicatae Sinica, 2022, 38 (04) : 916 - 924