On fractional (g, f, n)-critical graphs

被引:0
|
作者
Liu, Shuli [1 ]
机构
[1] Weifang Univ, Sch Math & Informat Sci, Weifang, Peoples R China
来源
2011 INTERNATIONAL CONFERENCE ON COMPUTERS, COMMUNICATIONS, CONTROL AND AUTOMATION (CCCA 2011), VOL II | 2010年
关键词
graph; toughness; fractional; (g; f)-factor; f; n)-critical graph; N)-CRITICAL GRAPHS; TOUGHNESS; EXISTENCE; (G;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let G be a graph with vertex set V(G). For any S subset of V(G) we use omega(G - S) to denote the number of components of G - S. The toughness of G, t(G), is defined as t(G) = min{vertical bar S vertical bar/omega(G - S)vertical bar S subset of V(G), omega(G - S) > 1} if G is not complete; otherwise, set t(G) = +infinity. In this paper, we consider the relationship between the toughness and fractional (g, f, n)-critical graphs. It is proved that a graph G is a (g, f, n) -critical graph if t(G) >= (b - 1)(b + n + 1)/a, where a, b, n are integers such that 1 <= a <= b and b >= (1 + root(4n + 5)/2.
引用
收藏
页码:242 / 245
页数:4
相关论文
共 50 条
  • [41] A result on restricted fractional (g,f)-factors in graphs
    Zhou, Sizhong
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2020, 63 (04): : 407 - 416
  • [42] Toughness and Existence of Fractional (g, f)-factors in Graphs
    Liu, Shuli
    Cai, Jiansheng
    ARS COMBINATORIA, 2009, 93 : 305 - 311
  • [43] Remarks on restricted fractional (g, f )-factors in graphs
    Zhou, Sizhong
    DISCRETE APPLIED MATHEMATICS, 2024, 354 : 271 - 278
  • [44] Isolated toughness and fractional (a,b,n)-critical graphs
    Gao, Wei
    Wang, Weifan
    Chen, Yaojun
    CONNECTION SCIENCE, 2023, 35 (01)
  • [45] Existence of all generalized fractional (g, f)-factors of graphs
    Egawa, Yoshimi
    Kano, Mikio
    Yokota, Maho
    DISCRETE APPLIED MATHEMATICS, 2020, 283 (283) : 265 - 271
  • [46] Binding numbers and restricted fractional (g, f)-factors in graphs
    Zhou, Sizhong
    DISCRETE APPLIED MATHEMATICS, 2021, 305 : 350 - 356
  • [47] Independence Number, Connectivity and Fractional (g, f)-Factors in Graphs
    Bian, Qiuju
    Zhou, Sizhong
    FILOMAT, 2015, 29 (04) : 757 - 761
  • [48] Some results on fractional n-factor-critical graphs
    Yu J.
    Bian Q.
    Liu G.
    Wang N.
    Journal of Applied Mathematics and Computing, 2007, 25 (1-2) : 283 - 291
  • [49] A Sufficient Condition for the Existence of Restricted Fractional (g, f)-Factors in Graphs
    Zhou, S.
    Sun, Z.
    Pan, Q.
    PROBLEMS OF INFORMATION TRANSMISSION, 2020, 56 (04) : 332 - 344
  • [50] A Sufficient Condition for the Existence of Restricted Fractional (g, f)-Factors in Graphs
    S. Zhou
    Z. Sun
    Q. Pan
    Problems of Information Transmission, 2020, 56 : 332 - 344