On fractional (g, f, n)-critical graphs

被引:0
|
作者
Liu, Shuli [1 ]
机构
[1] Weifang Univ, Sch Math & Informat Sci, Weifang, Peoples R China
来源
2011 INTERNATIONAL CONFERENCE ON COMPUTERS, COMMUNICATIONS, CONTROL AND AUTOMATION (CCCA 2011), VOL II | 2010年
关键词
graph; toughness; fractional; (g; f)-factor; f; n)-critical graph; N)-CRITICAL GRAPHS; TOUGHNESS; EXISTENCE; (G;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let G be a graph with vertex set V(G). For any S subset of V(G) we use omega(G - S) to denote the number of components of G - S. The toughness of G, t(G), is defined as t(G) = min{vertical bar S vertical bar/omega(G - S)vertical bar S subset of V(G), omega(G - S) > 1} if G is not complete; otherwise, set t(G) = +infinity. In this paper, we consider the relationship between the toughness and fractional (g, f, n)-critical graphs. It is proved that a graph G is a (g, f, n) -critical graph if t(G) >= (b - 1)(b + n + 1)/a, where a, b, n are integers such that 1 <= a <= b and b >= (1 + root(4n + 5)/2.
引用
收藏
页码:242 / 245
页数:4
相关论文
共 50 条
  • [31] Sharp conditions on fractional ID-(g, f)-factor-critical covered graphs
    Liu, Hongxia
    RAIRO-OPERATIONS RESEARCH, 2022, 56 (05) : 3257 - 3265
  • [32] NEW ISOLATED TOUGHNESS CONDITION FOR FRACTIONAL (g, f, n) - CRITICAL GRAPH
    Gao, Wei
    Wang, Weifan
    COLLOQUIUM MATHEMATICUM, 2017, 147 (01) : 55 - 65
  • [33] Binding number and fractional (g, f, n′, m)-critical deleted graph
    Gao, Wei
    Wang, Weifan
    ARS COMBINATORIA, 2014, 113A : 49 - 64
  • [34] Toughness Condition for a Graph to be All Fractional (g, f, n)-Critical Deleted
    Gao, Wei
    Wang, Weifan
    Dimitrov, Darko
    FILOMAT, 2019, 33 (09) : 2735 - 2746
  • [35] Toughness Condition for a Graph to Be a Fractional (g, f, n)-Critical Deleted Graph
    Gao, Wei
    Gao, Yun
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [36] A note on fractional (g, f, m)-deleted graphs
    Gao, Wei
    Wang, Weifan
    ARS COMBINATORIA, 2014, 113A : 129 - 137
  • [37] Characterizations of maximum fractional (g, f)-factors of graphs
    Liu, Guizhen
    Zhang, Lanju
    DISCRETE APPLIED MATHEMATICS, 2008, 156 (12) : 2293 - 2299
  • [38] Isolated toughness and fractional (g, f)-factors of graphs
    Ma, Yinghong
    Wang, Aiyun
    Li, JianXiang
    ARS COMBINATORIA, 2009, 93 : 153 - 160
  • [39] Binding numbers and fractional (g, f)-deleted graphs
    Zhou, Sizhong
    UTILITAS MATHEMATICA, 2014, 93 : 305 - 314
  • [40] Isolated Toughness and Fractional (g, f)-Factors of Graphs
    Zhou, Sizhong
    Duan, Ziming
    Pu, Bingyuan
    ARS COMBINATORIA, 2013, 110 : 239 - 247