Multiple Instance Support Vector Machines With Latent Variable Description

被引:0
|
作者
Lu, Lianjiang [1 ]
Li, Wei [1 ]
Wang, Liabao [1 ]
Zhang, Yafei [1 ]
Li, Yang [1 ]
Bao, Lei [1 ]
机构
[1] PLA Univ Sci & Technol, Coll Command Informat Syst, Nanjing, Jiangsu, Peoples R China
关键词
Multiple instance learning; Support vector machines; Latent variable models; Stochastic gradient descent;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, the latent variable model is adopted to re-describe MI-SVM and its feature mapping variants. MI-SVM with latent variable description and the corresponding stochastic optimization learning algorithm are proposed. In the Musk and Corel datasets, the proposed algorithm achieves higher predicting accuracy and faster learning speed, with strong stability and robustness for parameters and noise.
引用
收藏
页码:433 / 438
页数:6
相关论文
共 50 条
  • [21] Multiple Outlooks Learning with Support Vector Machines
    Liu, Yinglu
    Zhang, Xu-Yao
    Huang, Kaizhu
    Hou, Xinwen
    Liu, Cheng-Lin
    NEURAL INFORMATION PROCESSING, ICONIP 2012, PT III, 2012, 7665 : 116 - 124
  • [22] Choosing Multiple Parameters for Support Vector Machines
    Olivier Chapelle
    Vladimir Vapnik
    Olivier Bousquet
    Sayan Mukherjee
    Machine Learning, 2002, 46 : 131 - 159
  • [23] Applying Instance-weighted Support Vector Machines to Class Imbalanced Datasets
    Wang, Xiaoguang
    Liu, Xuan
    Matwin, Stan
    Japkowicz, Nathalie
    2014 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2014,
  • [24] Fuzzy data domain description using support vector machines
    Wei, LL
    Long, WJ
    Zhang, WX
    2003 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-5, PROCEEDINGS, 2003, : 3082 - 3085
  • [25] Generalized eigenvalue proximal support vector machines for outlier description
    Dufrenois, Franck
    Noyer, Jean Charles
    2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,
  • [26] Lesion-Specific Coronary Artery Calcium Quantification for Predicting Cardiac Event with Multiple Instance Support Vector Machines
    Liu, Qingshan
    Qian, Zhen
    Marvasty, Idean
    Rinehart, Sarah
    Voros, Szilard
    Metaxas, Dimitris N.
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2010, PT I, 2010, 6361 : 484 - +
  • [27] Variable selection for support vector machines in moderately high dimensions
    Zhang, Xiang
    Wu, Yichao
    Wang, Lan
    Li, Runze
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2016, 78 (01) : 53 - 76
  • [28] Extensional Ontology Matching with Variable Selection for Support Vector Machines
    Todorov, Konstantin
    Geibel, Peter
    Kuehnberger, Kai-Uwe
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPLEX, INTELLIGENT AND SOFTWARE INTENSIVE SYSTEMS (CISIS 2010), 2010, : 962 - 967
  • [29] Training support vector machines with multiple equality constraints
    Kienzle, W
    Schölkopf, B
    MACHINE LEARNING: ECML 2005, PROCEEDINGS, 2005, 3720 : 182 - 193
  • [30] Evolutionary multiple kernels design for support vector machines
    Li, Ren-Bing
    Li, Ai-Hua
    Bai, Xiang-Feng
    Cai, Yan-Ping
    Wang, De-Sheng
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2011, 28 (06): : 793 - 798