Multiple Instance Support Vector Machines With Latent Variable Description

被引:0
|
作者
Lu, Lianjiang [1 ]
Li, Wei [1 ]
Wang, Liabao [1 ]
Zhang, Yafei [1 ]
Li, Yang [1 ]
Bao, Lei [1 ]
机构
[1] PLA Univ Sci & Technol, Coll Command Informat Syst, Nanjing, Jiangsu, Peoples R China
关键词
Multiple instance learning; Support vector machines; Latent variable models; Stochastic gradient descent;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, the latent variable model is adopted to re-describe MI-SVM and its feature mapping variants. MI-SVM with latent variable description and the corresponding stochastic optimization learning algorithm are proposed. In the Musk and Corel datasets, the proposed algorithm achieves higher predicting accuracy and faster learning speed, with strong stability and robustness for parameters and noise.
引用
收藏
页码:433 / 438
页数:6
相关论文
共 50 条
  • [1] Multiple Instance Twin Support Vector Machines
    Shao, Yuan-Hai
    Yang, Zhi-Xia
    Wang, Xiao-Bo
    Deng, Nai-Yang
    OPERATIONS RESEARCH AND ITS APPLICATIONS, 2010, 12 : 433 - +
  • [2] Robust support vector machines for multiple instance learning
    Mohammad H. Poursaeidi
    O. Erhun Kundakcioglu
    Annals of Operations Research, 2014, 216 : 205 - 227
  • [3] Robust support vector machines for multiple instance learning
    Poursaeidi, Mohammad H.
    Kundakcioglu, O. Erhun
    ANNALS OF OPERATIONS RESEARCH, 2014, 216 (01) : 205 - 227
  • [4] Multiple instance learning with generalized support vector machines
    Andrews, S
    Hofmann, T
    Tsochantaridis, I
    EIGHTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-02)/FOURTEENTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE (IAAI-02), PROCEEDINGS, 2002, : 943 - 944
  • [5] Nonparallel Support Vector Machines for Multiple-instance Learning
    Zhang, Qin
    Tian, Yingjie
    Liu, Dalian
    FIRST INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT, 2013, 17 : 1063 - 1072
  • [6] Influence of Positive Instances on Multiple Instance Support Vector Machines
    Monteiro, Nuno Barroso
    Barreto, Joao Pedro
    Gaspar, Jose
    ROBOT 2015: SECOND IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, VOL 2, 2016, 418 : 259 - 271
  • [7] A New Convex Loss Function For Multiple Instance Support Vector Machines
    Kim, Sang-Baeg
    Bae, Jung-Man
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 9023 - 9029
  • [8] Support vector data description method for solving multiple instance problems
    Fang, J.-L. (fjl@hdu.edu.cn), 1600, Chinese Institute of Electronics (41):
  • [9] Cell Segmentation Using Multiple Instance Learning Based Support Vector Machines
    Kaya, Soner
    Bilgin, Gokhan
    2019 MEDICAL TECHNOLOGIES CONGRESS (TIPTEKNO), 2019, : 460 - 463
  • [10] Variable Selection for Support Vector Machines
    Bierman, Surette
    Steel, Sarel
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2009, 38 (08) : 1640 - 1658