Shannon information entropies for position-dependent mass Schrodinger problem with a hyperbolic well

被引:68
|
作者
Sun Guo-Hua [1 ]
Popov, Dusan [2 ]
Camacho-Nieto, Oscar [3 ]
Dong Shi-Hai [3 ]
机构
[1] UPALM, Inst Politecn Nacl, Ctr Invest Computac, Catedra CONACyT, Mexico City 07738, DF, Mexico
[2] Politehn Univ Timisoara, Dept Phys Fdn Engn, Timisoara 300223, Romania
[3] UPALM, Inst Politecn Nacl, CIDETEC, Mexico City 07700, DF, Mexico
关键词
position-dependent mass; Shannon information entropy; hyperbolic potential; Fourier transform; UNCERTAINTY RELATIONS; LAGUERRE-POLYNOMIALS; HARMONIC-OSCILLATOR; STRONG ASYMPTOTICS; EQUATION; POTENTIALS;
D O I
10.1088/1674-1056/24/10/100303
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Shannon information entropy for the Schrodinger equation with a nonuniform solitonic mass is evaluated for a hyperbolic-type potential. The number of nodes of the wave functions in the transformed space z are broken when recovered to original space x. The position S-x and momentum S-p information entropies for six low-lying states are calculated. We notice that the S-x decreases with the increasing mass barrier width a and becomes negative beyond a particular width a, while the S-p first increases with a and then decreases with it. The negative S-x exists for the probability densities that are highly localized. We find that the probability density rho(x) for n = 1,3,5 are greater than 1 at position x = 0. Some interesting features of the information entropy densities rho(s) (x) and rho(s) (p) are demonstrated. The Bialynicki-Birula-Mycielski (BBM) inequality is also tested for these states and found to hold.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Shannon information entropies for position-dependent mass Schrdinger problem with a hyperbolic well
    Sun Guo-Hua
    Duan Popov
    Oscar Camacho-Nieto
    Dong Shi-Hai
    Chinese Physics B, 2015, (10) : 49 - 56
  • [2] Quantum information entropies for position-dependent mass Schrodinger problem
    Yanez-Navarro, G.
    Sun, Guo-Hua
    Dytrych, T.
    Launey, K. D.
    Dong, Shi-Hai
    Draayerc, J. P.
    ANNALS OF PHYSICS, 2014, 348 : 153 - 160
  • [3] Fisher information and Shannon entropy of position-dependent mass oscillators
    Macedo, D. X.
    Guedes, I.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 434 : 211 - 219
  • [4] Analytic Results in the Position-Dependent Mass Schrodinger Problem
    Cunha, M. S.
    Christiansen, H. R.
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2013, 60 (06) : 642 - 650
  • [5] Fisher information for the position-dependent mass Schrodinger system
    Falaye, B. J.
    Serrano, F. A.
    Dong, Shi-Hai
    PHYSICS LETTERS A, 2016, 380 (1-2) : 267 - 271
  • [6] The Schrodinger equation with position-dependent mass
    Killingbeck, J. P.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (28)
  • [8] On the Solution of the Schrodinger Equation with Position-Dependent Mass
    Sezgin, Mehmet
    UNIVERSE, 2020, 6 (03)
  • [9] Position-Dependent Mass Schrodinger Equation for the Morse Potential
    Ovando, G.
    Pena, J. J.
    Morales, J.
    Lopez-Bonilla, J.
    VIII INTERNATIONAL CONGRESS OF ENGINEERING PHYSICS, 2017, 792
  • [10] Position-Dependent Mass Schrodinger Equation for the Morse Potential
    Ovando, G.
    Pena, J. J.
    Morales, J.
    Lopez-Bonilla, J.
    VIII INTERNATIONAL CONGRESS OF ENGINEERING PHYSICS, 2017, 792