Residual Spectral-Spatial Attention Network for Hyperspectral Image Classification

被引:355
|
作者
Zhu, Minghao [1 ]
Jiao, Licheng [1 ]
Liu, Fang [1 ]
Yang, Shuyuan [1 ]
Wang, Jianing [1 ]
机构
[1] Xidian Univ, Key Lab Intelligent Percept & Image Understanding, Minist Educ,Int Res Ctr Intelligent Percept & Com, Joint Int Res Lab Intelligent Percept & Computat, Xian 710071, Peoples R China
来源
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Feature extraction; Hyperspectral imaging; Task analysis; Training; Adaptation models; Machine learning; Attention network; convolutional neural networks (CNNs); hyperspectral image(HSI) classification; residual spectral-spatial attention network (RSSAN); spatial attention; spectral attention; INFORMATION; AUTOENCODER; FUSION;
D O I
10.1109/TGRS.2020.2994057
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In the last five years, deep learning has been introduced to tackle the hyperspectral image (HSI) classification and demonstrated good performance. In particular, the convolutional neural network (CNN)-based methods for HSI classification have made great progress. However, due to the high dimensionality of HSI and equal treatment of all bands, the performance of these methods is hampered by learning features from useless bands for classification. Moreover, for patchwise-based CNN models, equal treatment of spatial information from the pixel-centered neighborhood also hinders the performance of these methods. In this article, we propose an end-to-end residual spectral-spatial attention network (RSSAN) for HSI classification. The RSSAN takes raw 3-D cubes as input data without additional feature engineering. First, a spectral attention module is designed for spectral band selection from raw input data by emphasizing useful bands for classification and suppressing useless bands. Then, a spatial attention module is designed for the adaptive selection of spatial information by emphasizing pixels from the same class as the center pixel or those are useful for classification in the pixel-centered neighborhood and suppressing those from a different class or useless. Second, two attention modules are also used in the following CNN for adaptive feature refinement in spectral-spatial feature learning. Third, a sequential spectral-spatial attention module is embedded into a residual block to avoid overfitting and accelerate the training of the proposed model. Experimental studies demonstrate that the RSSAN achieved superior classification accuracy compared with the state of the art on three HSI data sets: Indian Pines (IN), University of Pavia (UP), and Kennedy Space Center (KSC).
引用
收藏
页码:449 / 462
页数:14
相关论文
共 50 条
  • [21] Spectral-Spatial Large Kernel Attention Network for Hyperspectral Image Classification
    Wu, Chunran
    Tong, Lei
    Zhou, Jun
    Xiao, Chuangbai
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 14
  • [22] Spectral-Spatial Attention Networks for Hyperspectral Image Classification
    Mei, Xiaoguang
    Pan, Erting
    Ma, Yong
    Dai, Xiaobing
    Huang, Jun
    Fan, Fan
    Du, Qinglei
    Zheng, Hong
    Ma, Jiayi
    REMOTE SENSING, 2019, 11 (08)
  • [23] Grouped Multi-Attention Network for Hyperspectral Image Spectral-Spatial Classification
    Lu, Ting
    Liu, Mengkai
    Fu, Wei
    Kang, Xudong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [24] Multilayer Global Spectral-Spatial Attention Network for Wetland Hyperspectral Image Classification
    Xie, Zhuojun
    Hu, Jianwen
    Kang, Xudong
    Duan, Puhong
    Li, Shutao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [25] Hyperspectral image classification based on multiscale piecewise spectral-spatial attention network
    Fan, Xinru
    Guo, Wenhui
    Wang, Xueqin
    Wang, Yanjiang
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2023, 44 (11) : 3529 - 3549
  • [26] Parameter-Free Attention Network for Spectral-Spatial Hyperspectral Image Classification
    Paoletti, Mercedes E.
    Tao, Xuanwen
    Han, Lirong
    Wu, Zhaoyue
    Moreno-Alvarez, Sergio
    Roy, Swalpa Kumar
    Plaza, Antonio
    Haut, Juan M.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [27] Center-similarity spectral-spatial attention network for hyperspectral image classification
    Zhang, YaJuan
    Liang, JiaHao
    Niu, PengHui
    Xu, WenJia
    JOURNAL OF APPLIED REMOTE SENSING, 2024, 18 (01)
  • [28] Spectral-Spatial Morphological Attention Transformer for Hyperspectral Image Classification
    Roy, Swalpa Kumar
    Deria, Ankur
    Shah, Chiranjibi
    Haut, Juan M.
    Du, Qian
    Plaza, Antonio
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [29] Spectral-Spatial Morphological Attention Transformer for Hyperspectral Image Classification
    Roy, Swalpa Kumar
    Deria, Ankur
    Shah, Chiranjibi
    Haut, Juan M.
    Du, Qian
    Plaza, Antonio
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [30] A spectral-spatial attention aggregation network for hyperspectral imagery classification
    Kuang, Wenlan
    Tu, Bing
    He, Wangquan
    Zhang, Guoyun
    Peng, Yishu
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2021, 42 (19) : 7551 - 7580