Residual Spectral-Spatial Attention Network for Hyperspectral Image Classification

被引:355
|
作者
Zhu, Minghao [1 ]
Jiao, Licheng [1 ]
Liu, Fang [1 ]
Yang, Shuyuan [1 ]
Wang, Jianing [1 ]
机构
[1] Xidian Univ, Key Lab Intelligent Percept & Image Understanding, Minist Educ,Int Res Ctr Intelligent Percept & Com, Joint Int Res Lab Intelligent Percept & Computat, Xian 710071, Peoples R China
来源
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Feature extraction; Hyperspectral imaging; Task analysis; Training; Adaptation models; Machine learning; Attention network; convolutional neural networks (CNNs); hyperspectral image(HSI) classification; residual spectral-spatial attention network (RSSAN); spatial attention; spectral attention; INFORMATION; AUTOENCODER; FUSION;
D O I
10.1109/TGRS.2020.2994057
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In the last five years, deep learning has been introduced to tackle the hyperspectral image (HSI) classification and demonstrated good performance. In particular, the convolutional neural network (CNN)-based methods for HSI classification have made great progress. However, due to the high dimensionality of HSI and equal treatment of all bands, the performance of these methods is hampered by learning features from useless bands for classification. Moreover, for patchwise-based CNN models, equal treatment of spatial information from the pixel-centered neighborhood also hinders the performance of these methods. In this article, we propose an end-to-end residual spectral-spatial attention network (RSSAN) for HSI classification. The RSSAN takes raw 3-D cubes as input data without additional feature engineering. First, a spectral attention module is designed for spectral band selection from raw input data by emphasizing useful bands for classification and suppressing useless bands. Then, a spatial attention module is designed for the adaptive selection of spatial information by emphasizing pixels from the same class as the center pixel or those are useful for classification in the pixel-centered neighborhood and suppressing those from a different class or useless. Second, two attention modules are also used in the following CNN for adaptive feature refinement in spectral-spatial feature learning. Third, a sequential spectral-spatial attention module is embedded into a residual block to avoid overfitting and accelerate the training of the proposed model. Experimental studies demonstrate that the RSSAN achieved superior classification accuracy compared with the state of the art on three HSI data sets: Indian Pines (IN), University of Pavia (UP), and Kennedy Space Center (KSC).
引用
收藏
页码:449 / 462
页数:14
相关论文
共 50 条
  • [11] Lightweight Spectral-Spatial Attention Network for Hyperspectral Image Classification
    Cui, Ying
    Xia, Jinbiao
    Wang, Zhiteng
    Gao, Shan
    Wang, Liguo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [12] Expansion Spectral-Spatial Attention Network for Hyperspectral Image Classification
    Wang, Shuo
    Liu, Zhengjun
    Chen, Yiming
    Hou, Chengchao
    Liu, Aixia
    Zhang, Zhenbei
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 6411 - 6427
  • [13] SPECTRAL-SPATIAL FUSED ATTENTION NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Li, Ningyang
    Wang, Zhaohui
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 3832 - 3836
  • [14] A Dense Pyramidal Residual Network with a Tandem Spectral-Spatial Attention Mechanism for Hyperspectral Image Classification
    Guan, Yunlan
    Li, Zixuan
    Wang, Nan
    SENSORS, 2025, 25 (06)
  • [15] Multiscale Dual-Branch Residual Spectral-Spatial Network With Attention for Hyperspectral Image Classification
    Ghaderizadeh, Saeed
    Abbasi-Moghadam, Dariush
    Sharifi, Alireza
    Tariq, Aqil
    Qin, Shujing
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 5455 - 5467
  • [16] Cross-Attention Spectral-Spatial Network for Hyperspectral Image Classification
    Yang, Kai
    Sun, Hao
    Zou, Chunbo
    Lu, Xiaoqiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [17] Cooperative Spectral-Spatial Attention Dense Network for Hyperspectral Image Classification
    Dong, Zhimin
    Cai, Yaoming
    Cai, Zhihua
    Liu, Xiaobo
    Yang, Zhaoyu
    Zhuge, Mingchen
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (05) : 866 - 870
  • [18] Spectral-Spatial Graph Attention Network for Semisupervised Hyperspectral Image Classification
    Zhao, Zhengang
    Wang, Hao
    Yu, Xianchuan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [19] SPECTRAL-SPATIAL CLASSIFICATION OF HYPERSPECTRAL IMAGE BASED ON A JOINT ATTENTION NETWORK
    Pan, Erting
    Ma, Yong
    Mei, Xiaoguang
    Dai, Xiaobing
    Fan, Fan
    Tian, Xin
    Ma, Jiayi
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 413 - 416
  • [20] Hyperspectral Image Classification Based on Spectral-Spatial Attention Tensor Network
    Zhang, Wei-Tao
    Li, Yi-Bang
    Liu, Lu
    Bai, Yv
    Cui, Jian
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5