The fractional Keller-Segel model

被引:105
|
作者
Escudero, Carlos [1 ]
机构
[1] Univ Oxford, Inst Math, Oxford OX1 3LB, England
关键词
D O I
10.1088/0951-7715/19/12/010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Keller-Segel model is a system of partial differential equations modelling chemotactic aggregation in cellular systems. This model has blowing-up solutions for large enough initial conditions in dimensions d >= 2, but all the solutions are regular in one dimension, a mathematical fact that crucially affects the patterns that can form in the biological system. One of the strongest assumptions of the Keller-Segel model is the diffusive character of the cellular motion, known to be false in many situations. We extend this model to such situations in which the cellular dispersal is better modelled by a fractional operator. We analyse this fractional Keller-Segel model and find that all solutions are again globally bounded in time in one dimension. This fact shows the robustness of the main biological conclusions obtained from the Keller-Segel model.
引用
收藏
页码:2909 / 2918
页数:10
相关论文
共 50 条
  • [31] On the fractional doubly parabolic Keller-Segel system modelling chemotaxis
    Mario Bezerra
    Claudio Cuevas
    Clessius Silva
    Herme Soto
    ScienceChina(Mathematics), 2022, 65 (09) : 1827 - 1874
  • [32] BOUNDEDNESS AND HOMOGENEOUS ASYMPTOTICS FOR A FRACTIONAL LOGISTIC KELLER-SEGEL EQUATIONS
    Burczak, Jan
    Granero-Belinchon, Rafael
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (02): : 139 - 164
  • [33] On the Fractional View Analysis of Keller-Segel Equations with Sensitivity Functions
    Liu, Haobin
    Khan, Hassan
    Shah, Rasool
    Alderremy, A. A.
    Aly, Shaban
    Baleanu, Dumitru
    COMPLEXITY, 2020, 2020 (2020)
  • [34] ON A HYPERBOLIC KELLER-SEGEL SYSTEM WITH DEGENERATE NONLINEAR FRACTIONAL DIFFUSION
    Karlsen, Kenneth H.
    Ulusoy, Suleyman
    NETWORKS AND HETEROGENEOUS MEDIA, 2016, 11 (01) : 181 - 201
  • [35] On the fractional doubly parabolic Keller-Segel system modelling chemotaxis
    Mario Bezerra
    Claudio Cuevas
    Clessius Silva
    Herme Soto
    Science China Mathematics, 2022, 65 : 1827 - 1874
  • [36] On the Neumann problem for fractional semilinear elliptic equations arising from Keller-Segel model
    Jin, Zhen-Feng
    Sun, Hong-Rui
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (12) : 7780 - 7793
  • [37] Well-posedness and blow-up of the fractional Keller-Segel model on domains
    Costa, Masterson
    Cuevas, Claudio
    Silva, Clessius
    Soto, Herme
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (12) : 5569 - 5592
  • [38] Fractional Complex Transform and Homotopy Perturbation Method for the Approximate Solution of Keller-Segel Model
    Luo, Xiankang
    Nadeem, Muhammad
    Inc, Mustafa
    Dawood, Suliman
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [39] Fractional Complex Transform and Homotopy Perturbation Method for the Approximate Solution of Keller-Segel Model
    Luo, Xiankang
    Nadeem, Muhammad
    Inc, Mustafa
    Dawood, Suliman
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [40] ASSESSING THE KELLER-SEGEL MODEL - HOW HAS IT FARED
    KELLER, EF
    ADVANCES IN APPLIED PROBABILITY, 1980, 12 (03) : 567 - 568