On the fractional doubly parabolic Keller-Segel system modelling chemotaxis

被引:0
|
作者
Mario Bezerra [1 ]
Claudio Cuevas [1 ]
Clessius Silva [2 ]
Herme Soto [3 ]
机构
[1] Department of Mathematics, Federal University of Pernambuco
[2] Department of Mathematics, Rural Federal University of Pernambuco
[3] Department of Mathematics and Statistics, University of La Frontera
关键词
D O I
暂无
中图分类号
O175.26 [抛物型方程];
学科分类号
摘要
This work is concerned with the time-fractional doubly parabolic Keller-Segel system in R~N(N≥1),and we derive some refined results on the large time behavior of solutions which are presupposed to enjoy some uniform boundedness properties. Moreover, the well-posedness and the asymptotic stability of solutions in Marcinkiewicz spaces are studied. The results are achieved by means of an appropriate estimation of the system nonlinearity in the course of an analysis based on Duhamel-type representation formulae and the Kato-Fujita framework which consists in constructing a fixed-point argument by using a suitable time-dependent space.
引用
收藏
页码:1827 / 1874
页数:48
相关论文
共 50 条
  • [1] On the fractional doubly parabolic Keller-Segel system modelling chemotaxis
    Bezerra, Mario
    Cuevas, Claudio
    Silva, Clessius
    Soto, Herme
    SCIENCE CHINA-MATHEMATICS, 2022, 65 (09) : 1827 - 1874
  • [2] On the fractional doubly parabolic Keller-Segel system modelling chemotaxis
    Mario Bezerra
    Claudio Cuevas
    Clessius Silva
    Herme Soto
    Science China Mathematics, 2022, 65 : 1827 - 1874
  • [3] On the parabolic-elliptic limit of the doubly parabolic Keller-Segel system modelling chemotaxis
    Biler, Piotr
    Brandolese, Lorenzo
    STUDIA MATHEMATICA, 2009, 193 (03) : 241 - 261
  • [4] On a generalized doubly parabolic Keller-Segel system in one spatial dimension
    Burczak, Jan
    Granero-Belinchon, Rafael
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2016, 26 (01): : 111 - 160
  • [5] On the time-fractional Keller-Segel model for chemotaxis
    Cuevas, Claudio
    Silva, Clessius
    Soto, Herme
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (02) : 769 - 798
  • [6] Stochastic homogenization of the Keller-Segel chemotaxis system
    Matzavinos, Anastasios
    Ptashnyk, Mariya
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 144 : 58 - 76
  • [7] Stationary solutions to a Keller-Segel chemotaxis system
    Musso, Monica
    Wei, Juncheng
    ASYMPTOTIC ANALYSIS, 2006, 49 (3-4) : 217 - 247
  • [8] Fully parabolic Keller-Segel model for chemotaxis with prevention of overcrowding
    Di Francesco, Marco
    Rosado, Jesus
    NONLINEARITY, 2008, 21 (11) : 2715 - 2730
  • [9] Particle approximation of the doubly parabolic Keller-Segel equation in the plane
    Fournier, Nicolas
    Tomasevic, Milica
    JOURNAL OF FUNCTIONAL ANALYSIS, 2023, 285 (07)
  • [10] Asymptotic decay for the solutions of the parabolic-parabolic Keller-Segel chemotaxis system in critical spaces
    Corrias, Lucilla
    Perthame, Benoit
    MATHEMATICAL AND COMPUTER MODELLING, 2008, 47 (7-8) : 755 - 764