On the fractional doubly parabolic Keller-Segel system modelling chemotaxis

被引:0
|
作者
Mario Bezerra [1 ]
Claudio Cuevas [1 ]
Clessius Silva [2 ]
Herme Soto [3 ]
机构
[1] Department of Mathematics, Federal University of Pernambuco
[2] Department of Mathematics, Rural Federal University of Pernambuco
[3] Department of Mathematics and Statistics, University of La Frontera
关键词
D O I
暂无
中图分类号
O175.26 [抛物型方程];
学科分类号
摘要
This work is concerned with the time-fractional doubly parabolic Keller-Segel system in R~N(N≥1),and we derive some refined results on the large time behavior of solutions which are presupposed to enjoy some uniform boundedness properties. Moreover, the well-posedness and the asymptotic stability of solutions in Marcinkiewicz spaces are studied. The results are achieved by means of an appropriate estimation of the system nonlinearity in the course of an analysis based on Duhamel-type representation formulae and the Kato-Fujita framework which consists in constructing a fixed-point argument by using a suitable time-dependent space.
引用
收藏
页码:1827 / 1874
页数:48
相关论文
共 50 条
  • [31] Large mass self-similar solutions of the parabolic-parabolic Keller-Segel model of chemotaxis
    Biler, Piotr
    Corrias, Lucilla
    Dolbeault, Jean
    JOURNAL OF MATHEMATICAL BIOLOGY, 2011, 63 (01) : 1 - 32
  • [32] BOUNDARY SPIKES OF A KELLER-SEGEL CHEMOTAXIS SYSTEM WITH SATURATED LOGARITHMIC SENSITIVITY
    Wang, Qi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (04): : 1231 - 1250
  • [33] Local and global solutions for a subdiffusive parabolic-parabolic Keller-Segel system
    Bezerra, Mario
    Cuevas, Claudio
    Viana, Arlucio
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (05):
  • [34] Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with logistic source
    Cao, Xinru
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 412 (01) : 181 - 188
  • [35] On the well-posedness for Keller-Segel system with fractional diffusion
    Wu, Gang
    Zheng, Xiaoxin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (14) : 1739 - 1750
  • [36] On spectra of linearized operators for Keller-Segel models of chemotaxis
    Dejak, S. I.
    Lushnikov, P. M.
    Ovchinnikov, Yu N.
    Sigal, I. M.
    PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (15) : 1245 - 1254
  • [37] ON A HYPERBOLIC KELLER-SEGEL SYSTEM WITH DEGENERATE NONLINEAR FRACTIONAL DIFFUSION
    Karlsen, Kenneth H.
    Ulusoy, Suleyman
    NETWORKS AND HETEROGENEOUS MEDIA, 2016, 11 (01) : 181 - 201
  • [38] THE HYPERBOLIC-PARABOLIC CHEMOTAXIS SYSTEM FOR VASCULOGENESIS: GLOBAL DYNAMICS AND RELAXATION LIMIT TOWARD A KELLER-SEGEL MODEL
    Crin-Barat, Timothee
    He, Qingyo
    Shou, Ling-yun
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2023, 55 (05) : 4445 - 4492
  • [39] Boundedness in a quasilinear fully parabolic Keller-Segel system with logistic source
    Zhang, Qingshan
    Li, Yuxiang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (05): : 2473 - 2484
  • [40] Nondegeneracy of blow-up points for the parabolic Keller-Segel system
    Mizoguchi, Noriko
    Souplet, Philippe
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (04): : 851 - 875