LARGE-SCALE RANDOM FEATURES FOR KERNEL REGRESSION

被引:0
|
作者
Laparra, Valero [1 ]
Gonzalez, Diego Marcos [2 ]
Tuia, Devis [2 ]
Camps-Valls, Gustau [1 ]
机构
[1] Univ Valencia, IPL, E-46003 Valencia, Spain
[2] Univ Zurich, CH-8006 Zurich, Switzerland
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Kernel methods constitute a family of powerful machine learning algorithms, which have found wide use in remote sensing and geosciences. However, kernel methods are still not widely adopted because of the high computational cost when dealing with large scale problems, such as the inversion of radiative transfer models. This paper introduces the method of random kitchen sinks (RKS) for fast statistical retrieval of bio-geo-physical parameters. The RKS method allows to approximate a kernel matrix with a set of random bases sampled from the Fourier domain. We extend their use to other bases, such as wavelets, stumps, and Walsh expansions. We show that kernel regression is now possible for datasets with millions of examples and high dimensionality. Examples on atmospheric parameter retrieval from infrared sounders and biophysical parameter retrieval by inverting PROSAIL radiative transfer models with simulated Sentinel-2 data show the effectiveness of the technique.
引用
收藏
页码:17 / 20
页数:4
相关论文
共 50 条
  • [31] SOME FEATURES OF THE PROPAGATION AND SCATTERING OF WAVES IN MEDIA WITH ANOMALOUSLY LARGE-SCALE RANDOM INHOMOGENEITIES
    VALKOV, AY
    ROMANOV, VP
    TIPYASOVA, TI
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1991, 99 (04): : 1283 - 1301
  • [32] Iteratively reweighted least square for kernel expectile regression with random features
    Cui, Yue
    Zheng, Songfeng
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (14) : 2370 - 2389
  • [33] Robust regression for large-scale neuroimaging studies
    Fritsch, Virgile
    Da Mota, Benoit
    Loth, Eva
    Varoquauxa, Gael
    Banaschewski, Tobias
    Barker, Gareth J.
    Bokde, Arun L. W.
    Bruehl, Ruediger
    Butzek, Brigitte
    Conrod, Patricia
    Flor, Herta
    Garavan, Hugh
    Lemaitre, Herve
    Mann, Karl
    Nees, Frauke
    Paus, Tomas
    Schad, Daniel J.
    Schuemann, Gunter
    Frouin, Vincent
    Poline, Jean-Baptiste
    Thirion, Bertrand
    NEUROIMAGE, 2015, 111 : 431 - 441
  • [34] Distributed estimation for large-scale expectile regression
    Pan, Yingli
    Wang, Haoyu
    Zhao, Xiaoluo
    Xu, Kaidong
    Liu, Zhan
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023,
  • [35] Transfer Learning with Large-Scale Quantile Regression
    Jin, Jun
    Yan, Jun
    Aseltine, Robert H.
    Chen, Kun
    TECHNOMETRICS, 2024, 66 (03) : 381 - 393
  • [36] Smoothed quantile regression with large-scale inference
    He, Xuming
    Pan, Xiaoou
    Tan, Kean Ming
    Zhou, Wen-Xin
    JOURNAL OF ECONOMETRICS, 2023, 232 (02) : 367 - 388
  • [37] A Genetic Fuzzy System for Large-scale Regression
    Rodriguez-Fdez, I.
    Mucientes, M.
    Bugarin, A.
    2016 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2016, : 1421 - 1428
  • [38] Large-scale geographically weighted regression on Spark
    Hung Tien Tran
    Hiep Tuan Nguyen
    Viet-Trung Tran
    2016 EIGHTH INTERNATIONAL CONFERENCE ON KNOWLEDGE AND SYSTEMS ENGINEERING (KSE), 2016, : 127 - 132
  • [39] Regression testing approach for large-scale systems
    Kandil, Passant
    Moussa, Sherin
    Badr, Nagwa
    2014 IEEE INTERNATIONAL SYMPOSIUM ON SOFTWARE RELIABILITY ENGINEERING WORKSHOPS (ISSREW), 2014, : 132 - 133
  • [40] Distributed estimation for large-scale expectile regression
    Pan, Yingli
    Wang, Haoyu
    Zhao, Xiaoluo
    Xu, Kaidong
    Liu, Zhan
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2025, 54 (01) : 104 - 119