LARGE-SCALE RANDOM FEATURES FOR KERNEL REGRESSION

被引:0
|
作者
Laparra, Valero [1 ]
Gonzalez, Diego Marcos [2 ]
Tuia, Devis [2 ]
Camps-Valls, Gustau [1 ]
机构
[1] Univ Valencia, IPL, E-46003 Valencia, Spain
[2] Univ Zurich, CH-8006 Zurich, Switzerland
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Kernel methods constitute a family of powerful machine learning algorithms, which have found wide use in remote sensing and geosciences. However, kernel methods are still not widely adopted because of the high computational cost when dealing with large scale problems, such as the inversion of radiative transfer models. This paper introduces the method of random kitchen sinks (RKS) for fast statistical retrieval of bio-geo-physical parameters. The RKS method allows to approximate a kernel matrix with a set of random bases sampled from the Fourier domain. We extend their use to other bases, such as wavelets, stumps, and Walsh expansions. We show that kernel regression is now possible for datasets with millions of examples and high dimensionality. Examples on atmospheric parameter retrieval from infrared sounders and biophysical parameter retrieval by inverting PROSAIL radiative transfer models with simulated Sentinel-2 data show the effectiveness of the technique.
引用
收藏
页码:17 / 20
页数:4
相关论文
共 50 条
  • [21] Large-scale kernel extreme learning machine
    Deng, Wan-Yu
    Zheng, Qing-Hua
    Chen, Lin
    Jisuanji Xuebao/Chinese Journal of Computers, 2014, 37 (11): : 2235 - 2246
  • [22] Large-scale multivariate forecasting models for Dengue - LSTM versus random forest regression
    Mussumeci, Elisa
    Coelho, Flavio Codeco
    SPATIAL AND SPATIO-TEMPORAL EPIDEMIOLOGY, 2020, 35
  • [23] Large Scale Kernel Regression via Linear Programming
    O.L. Mangasarian
    David R. Musicant
    Machine Learning, 2002, 46 : 255 - 269
  • [24] Large scale kernel regression via linear programming
    Mangasarian, OL
    Musicant, DR
    MACHINE LEARNING, 2002, 46 (1-3) : 255 - 269
  • [25] Large-scale structures in random graphs
    Bottcher, Julia
    SURVEYS IN COMBINATORICS 2017, 2017, 440 : 87 - 140
  • [26] Robustness in large-scale random networks
    Kim, N
    Médard, M
    IEEE INFOCOM 2004: THE CONFERENCE ON COMPUTER COMMUNICATIONS, VOLS 1-4, PROCEEDINGS, 2004, : 2364 - 2373
  • [27] UNIX FEATURES FOR LARGE-SCALE MAINFRAMES
    SEGAL, BM
    ROBERTSON, LM
    PROCEEDINGS : SEAS ANNIVERSARY MEETING 1989, VOLS 1 AND 2: THE CORPORATE NETWORK, 1989, : 859 - 863
  • [28] Randomized approximate class-specific kernel spectral regression analysis for large-scale face verification
    Li, Ke
    Wu, Gang
    MACHINE LEARNING, 2022, 111 (06) : 2037 - 2091
  • [29] Randomized approximate class-specific kernel spectral regression analysis for large-scale face verification
    Ke Li
    Gang Wu
    Machine Learning, 2022, 111 : 2037 - 2091
  • [30] Large-Scale Malicious Software Classification With Fuzzified Features and Boosted Fuzzy Random Forest
    Li, Fang-Qi
    Wang, Shi-Lin
    Liew, Alan Wee-Chung
    Ding, Weiping
    Liu, Gong-Shen
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2021, 29 (11) : 3205 - 3218